【題目】青島二中學(xué)生民議會在周五下午高峰時段,對公交路甲站和線乙站各隨機(jī)抽取了位乘客,統(tǒng)計其乘車等待時間(指乘客從等車到乘上車的時間,乘車等待時間不超過分鐘).將統(tǒng)計數(shù)據(jù)按,,,分組,制成頻率分布直方圖:

假設(shè)乘客乘車等待時間相互獨立.

1)此時段,從甲站的乘客中隨機(jī)抽取人,記為事件;從乙站的乘客中隨機(jī)抽取人,記為事件.若用頻率估計概率,求兩人乘車等待時間都小于分鐘的概率;

2)此時段,從乙站的乘客中隨機(jī)抽取人(不重復(fù)抽。,抽得在的人數(shù)為,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

【答案】1.2)分布列見解析,期望為.

【解析】

1)由設(shè)表示事件乘客乘車等待時間都小于分鐘,表示乘客乘車等待時間都小于分鐘表示乘客乘車等待時間都小于分鐘,求得,,結(jié)合題意,即可求得答案.

2的所有可能取值為:,求出相應(yīng)的概率,即可得到的分布列數(shù)學(xué)期望.即可求得答案.

1設(shè)表示事件“乘客乘車等待時間都小于分鐘”,表示“乘客乘車等待時間都小于分鐘”,

表示“乘客乘車等待時間都小于分鐘”,

由題意得:

“乘客,乘車等待時間都小于分鐘”的概率:

2從乙站的乘客中人數(shù)比例為:

隨機(jī)抽取人(不重復(fù)抽。,

抽得在的人X的可能取值為,且

的分布列為:

1

2

3

4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面是菱形,其對角線的交點為,且

1)求證:平面;

2)設(shè),若直線與平面所成的角為,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,,橢圓C)的離心率為,過點且斜率為1的直線被橢圓C截得的線段長為.

1)求橢圓C的方程;

2)設(shè)直線不經(jīng)過點,且C相交于A,B兩點.若直線與直線的斜率的和為,證明:過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為踐行綠水青山就是金山銀山的國家發(fā)展戰(zhàn)略,我市對某轄區(qū)內(nèi)畜牧、化工、煤炭三類行業(yè)共200個單位的生態(tài)環(huán)境治理成效進(jìn)行了考核評估,考評分?jǐn)?shù)達(dá)到85分及其以上的單位被稱為環(huán)保單位,未達(dá)到85分的單位被稱為環(huán)保單位.現(xiàn)通過分層抽樣的方法確定了這三類行業(yè)共20個單位進(jìn)行調(diào)研,統(tǒng)計考評分?jǐn)?shù)如下:

畜牧類行業(yè):85,9277,81,89,87

化工類行業(yè):79,7790,8583,91

煤炭類行業(yè):8789,76,84,7594,9088

1)計算該轄區(qū)這三類行業(yè)中每類行業(yè)的單位個數(shù);

2)若從畜牧類行業(yè)這六個單位中,再隨機(jī)選取兩個單位進(jìn)行生產(chǎn)效益調(diào)查,求選出的這兩個單位中既有環(huán)保單位,又有環(huán)保單位的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為評估大氣污染防治效果,調(diào)查區(qū)域空氣質(zhì)量狀況,某調(diào)研機(jī)構(gòu)從兩地分別隨機(jī)抽取了天的觀測數(shù)據(jù),得到兩地區(qū)的空氣質(zhì)量指數(shù)(AQI),繪制如圖頻率分布直方圖:

根據(jù)空氣質(zhì)量指數(shù),將空氣質(zhì)量狀況分為以下三個等級:

空氣質(zhì)量指數(shù)(AQI

空氣質(zhì)量狀況

優(yōu)良

輕中度污染

中度污染

1)試根據(jù)樣本數(shù)據(jù)估計地區(qū)當(dāng)年(天)的空氣質(zhì)量狀況優(yōu)良的天數(shù);

2)若分別在兩地區(qū)上述天中,且空氣質(zhì)量指數(shù)均不小于的日子里隨機(jī)各抽取一天,求抽到的日子里空氣質(zhì)量等級均為重度污染的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市移動公司為了提高服務(wù)質(zhì)量,決定對使用A,B兩種套餐的集團(tuán)用戶進(jìn)行調(diào)查,準(zhǔn)備從本市個人數(shù)超過1000人的大集團(tuán)和8個人數(shù)低于200人的小集團(tuán)中隨機(jī)抽取若干個集團(tuán)進(jìn)行調(diào)查,若一次抽取2個集團(tuán),全是小集團(tuán)的概率為

求n的值;

若取出的2個集團(tuán)是同一類集團(tuán),求全為大集團(tuán)的概率;

若一次抽取4個集團(tuán),假設(shè)取出小集團(tuán)的個數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),以下結(jié)論正確的個數(shù)為(

①當(dāng)時,函數(shù)的圖象的對稱中心為;

②當(dāng)時,函數(shù)上為單調(diào)遞減函數(shù);

③若函數(shù)上不單調(diào),則

④當(dāng)時,上的最大值為15

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)求的單調(diào)區(qū)間;

(2)若上成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,側(cè)面為等邊三角形,且垂直于底面, ,分別是的中點.

1)證明:平面平面;

2)已知點在棱上且,求直線與平面所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案