【題目】已知點,,橢圓C)的離心率為,過點且斜率為1的直線被橢圓C截得的線段長為.

1)求橢圓C的方程;

2)設(shè)直線不經(jīng)過點,且C相交于A,B兩點.若直線與直線的斜率的和為,證明:過定點.

【答案】1;(2)證明見解析

【解析】

1)聯(lián)立直線的方程和橢圓方程,由弦長公式,結(jié)合橢圓的離心率即可求得橢圓方程;

2)設(shè)出直線的方程,聯(lián)立橢圓方程,根據(jù)韋達定理,結(jié)合直線與直線的斜率的和為,即可容易證明.

1)由題意知,,則,

于是橢圓C的方程可化為,

直線的方程為

聯(lián)立.

設(shè)為兩交點,

, *

再由弦長公式得,

解得代入(*)成立,從而,

所以橢圓C的方程為.

2)設(shè)直線的斜率分別為,,

如果x軸垂直,設(shè),

由題設(shè)知,

可得AB坐標分別為,

,得,

此時的方程為,與橢圓只有一個公共點,與題意不符.

從而可設(shè)

代入

.

由題設(shè)可知

設(shè),

由題設(shè)知

,

解得,代入,得

此時,

所以過定點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,有一種游戲畫板,要求參與者用六種顏色給畫板涂色,這六種顏色分別為紅色、黃色1、黃色2、黃色3、金色1、金色2,其中黃色1、黃色2、黃色3是三種不同的顏色,金色1、金色2是兩種不同的顏色,要求紅色不在兩端,黃色1、黃色2、黃色3有且僅有兩種相鄰,則不同的涂色方案有( 。

A.120種B.240種C.144種D.288種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,過點且與軸垂直的直線被橢圓截得的線段長為,且與短軸兩端點的連線相互垂直.

1)求橢圓的方程;

2)若圓上存在兩點,,橢圓上存在兩個點滿足:三點共線,三點共線,且,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為迎接五一節(jié)的到來,某單位舉行慶五一,展風采的活動.現(xiàn)有6人參加其中的一個節(jié)目,該節(jié)目由兩個環(huán)節(jié)可供參加者選擇,為增加趣味性,該單位用電腦制作了一個選擇方案:按下電腦鍵盤Enter鍵則會出現(xiàn)模擬拋兩枚質(zhì)地均勻骰子的畫面,若干秒后在屏幕上出現(xiàn)兩個點數(shù),并在屏幕的下方計算出的值.現(xiàn)規(guī)定:每個人去按Enter鍵,當顯示出來的小于時則參加環(huán)節(jié),否則參加環(huán)節(jié).

1)求這6人中恰有2人參加該節(jié)目環(huán)節(jié)的概率;

2)用分別表示這6個人中去參加該節(jié)目兩個環(huán)節(jié)的人數(shù),記,求隨機變量的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠有兩臺不同機器生產(chǎn)同一種產(chǎn)品各10萬件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機抽取20件,進行品質(zhì)鑒定,鑒定成績的莖葉圖如圖所示:

該產(chǎn)品的質(zhì)量評價標準規(guī)定:鑒定成績達到的產(chǎn)品,質(zhì)量等級為優(yōu)秀;鑒定成績達到的產(chǎn)品,質(zhì)量等級為良好;鑒定成績達到的產(chǎn)品,質(zhì)量等級為合格.將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.

1)完成下列列聯(lián)表,以產(chǎn)品等級是否達到良好以上(含良好)為判斷依據(jù),判斷能不能在誤差不超過0.05的情況下,認為機器生產(chǎn)的產(chǎn)品比機器生產(chǎn)的產(chǎn)品好;

生產(chǎn)的產(chǎn)品

生產(chǎn)的產(chǎn)品

合計

良好以上(含良好)

合格

合計

2)根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,從兩臺不同機器生產(chǎn)的產(chǎn)品中各隨機抽取2件,求4件產(chǎn)品中機器生產(chǎn)的優(yōu)等品的數(shù)量多于機器生產(chǎn)的優(yōu)等品的數(shù)量的概率;

3)已知優(yōu)秀等級產(chǎn)品的利潤為12/件,良好等級產(chǎn)品的利潤為10/件,合格等級產(chǎn)品的利潤為5/件,機器每生產(chǎn)10萬件的成本為20萬元,機器每生產(chǎn)10萬件的成本為30萬元;該工廠決定:按樣本數(shù)據(jù)測算,兩種機器分別生產(chǎn)10萬件產(chǎn)品,若收益之差達到5萬元以上,則淘汰收益低的機器,若收益之差不超過5萬元,則仍然保留原來的兩臺機器.你認為該工廠會仍然保留原來的兩臺機器嗎?

附:獨立性檢驗計算公式:.

臨界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】出版商為了解某科普書一個季度的銷售量(單位:千本)和利潤(單位:元/本)之間的關(guān)系,對近年來幾次調(diào)價之后的季銷售量進行統(tǒng)計分析,得到如下的10組數(shù)據(jù).

序號

1

2

3

4

5

6

7

8

9

10

2.4

3.1

4.6

5.3

6.4

7.1

7.8

8.8

9.5

10

18.1

14.1

9.1

7.1

4.8

3.8

3.2

2.3

2.1

1.4

根據(jù)上述數(shù)據(jù)畫出如圖所示的散點圖:

1)根據(jù)圖中所示的散點圖判斷哪個更適宜作為銷售量關(guān)于利潤的回歸方程類型?(給出判斷即可,不需要說明理由)

2)根據(jù)(1)中的判斷結(jié)果及參考數(shù)據(jù),求出關(guān)于的回歸方程;

3)根據(jù)回歸方程設(shè)該科普書一個季度的利潤總額為(單位:千元),當季銷售量為何值時,該書一個季度的利潤總額預報值最大?(季利潤總額=季銷售量×每本書的利潤)

參考公式及參考數(shù)據(jù):

①對于一組數(shù)據(jù),其回歸直線的斜率和截距的公式分別為.

②參考數(shù)據(jù):

6.50

6.60

1.75

82.50

2.70

表中.另:.計算時,所有的小數(shù)都精確到0.01.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在單位正方體中,點P在線段上運動,給出以下四個命題:

異面直線間的距離為定值;

三棱錐的體積為定值;

異面直線與直線所成的角為定值;

二面角的大小為定值.

其中真命題有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】青島二中學生民議會在周五下午高峰時段,對公交路甲站和線乙站各隨機抽取了位乘客,統(tǒng)計其乘車等待時間(指乘客從等車到乘上車的時間,乘車等待時間不超過分鐘).將統(tǒng)計數(shù)據(jù)按,,,分組,制成頻率分布直方圖:

假設(shè)乘客乘車等待時間相互獨立.

1)此時段,從甲站的乘客中隨機抽取人,記為事件;從乙站的乘客中隨機抽取人,記為事件.若用頻率估計概率,求兩人乘車等待時間都小于分鐘的概率;

2)此時段,從乙站的乘客中隨機抽取人(不重復抽取),抽得在的人數(shù)為,求隨機變量的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)如圖所示,是一個矩形花壇,其中米,米.現(xiàn)將矩形花壇擴建成一個更大的矩形花壇,要求:上,上,對角線點,且矩形的面積小于150平方米.

(1)設(shè)長為米,矩形的面積為平方米,試用解析式將表示成的函數(shù),并確定函數(shù)的定義域;

(2)當的長度是多少時,矩形的面積最?并求最小面積.

查看答案和解析>>

同步練習冊答案