【題目】如圖,有一種游戲畫板,要求參與者用六種顏色給畫板涂色,這六種顏色分別為紅色、黃色1、黃色2、黃色3、金色1、金色2,其中黃色1、黃色2、黃色3是三種不同的顏色,金色1、金色2是兩種不同的顏色,要求紅色不在兩端,黃色1、黃色2、黃色3有且僅有兩種相鄰,則不同的涂色方案有( 。

A.120種B.240種C.144種D.288種

【答案】D

【解析】

首先計(jì)算出“黃色1、黃色2、黃色3有且僅有兩個相鄰的涂色方案”數(shù),然后計(jì)算出“紅色在左右兩端,黃色1、黃色2、黃色3有且僅有兩個相鄰的涂色方案”數(shù),用前者減去后者,求得題目所求不同的涂色方案總數(shù).

不考慮紅色的位置,黃色1、黃色2、黃色3有且僅有兩個相鄰的涂色方案有種. 這種情況下,紅色在左右兩端的涂色方案有種;從而所求的結(jié)果為種.故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四種說法正確的是( )

①若都是定義在上的函數(shù),則“同是奇函數(shù)”是“是偶函數(shù)”的充要條件

②命題”的否定是“ ≤0”

③命題“若x=2,則”的逆命題是“若,則x=2”

④命題:在中,若,則;

命題在第一象限是增函數(shù);

為真命題

A. ①②③④ B. ①③ C. ③④ D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,底面是直角梯形,,,,的中點(diǎn).

1)求證:平面平面;

2)若二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(0,-2),橢圓E (a>b>0)的離心率為,F是橢圓E的右焦點(diǎn),直線AF的斜率為O為坐標(biāo)原點(diǎn).

(1)E的方程;

(2)設(shè)過點(diǎn)A的動直線lE相交于P,Q兩點(diǎn).當(dāng)OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列不等式的解集:

1

2

3

4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】宋元時期杰出的數(shù)學(xué)家朱世杰在其數(shù)學(xué)巨著《四元玉鑒》卷中“菱草形段”第一個問題“今有菱草六百八十束,欲令‘落一形’捶(同垛)之,問底子(每層三角形邊菱草束數(shù),等價于層數(shù))幾何?”中探討了“垛積術(shù)”中的落一形垛(“落一形”即是指頂上束,下一層束,再下一層束,……,成三角錐的堆垛,故也稱三角垛,如圖,表示第二層開始的每層菱草束數(shù)),則本問題中三角垛底層菱草總束數(shù)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:過點(diǎn)和點(diǎn).

Ⅰ)求橢圓的方程;

Ⅱ)設(shè)直線與橢圓相交于不同的兩點(diǎn), ,是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體中,分別為的中點(diǎn),過任作一個平面分別與直線相交于點(diǎn),則下列結(jié)論正確的是___________.①對于任意的平面,都有直線,,相交于同一點(diǎn);②存在一個平面,使得點(diǎn)在線段上,點(diǎn)在線段的延長線上; ③對于任意的平面,都有;④對于任意的平面,當(dāng)在線段上時,幾何體的體積是一個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)x3(a0,且a≠1)

1)討論f(x)的奇偶性;

2)求a的取值范圍,使f(x)0在定義域上恒成立.

查看答案和解析>>

同步練習(xí)冊答案