【題目】已知某公司為鄭州園博園生產(chǎn)某特許商品,該公司年固定成本為10萬(wàn)元,每生產(chǎn)千件需另投入2 .7萬(wàn)元,設(shè)該公司年內(nèi)共生產(chǎn)該特許商品工x千件并全部銷售完;每千件的銷售收入為R(x)萬(wàn)元,

(I)寫(xiě)出年利潤(rùn)W(萬(wàn)元〉關(guān)于該特許商品x(千件)的函數(shù)解析式;

〔II〕年產(chǎn)量為多少千件時(shí),該公司在該特許商品的生產(chǎn)中所獲年利潤(rùn)最大?

【答案】(1) .

(2) 當(dāng)年產(chǎn)量為9千件時(shí),該公司在該特許商品生產(chǎn)中獲利最大.

【解析】

分析:(1)根據(jù)利潤(rùn)等于收入減去成本得解析式(2)先分段求最大值,一段根據(jù)導(dǎo)數(shù)得單調(diào)性,根據(jù)單調(diào)性變化規(guī)律確定最大值,另一段根據(jù)基本不等式求最值,最后取兩段最大值的最大值.

詳解:

(1)當(dāng)時(shí),

當(dāng)時(shí),

(2)①當(dāng)時(shí),由

當(dāng)

當(dāng)時(shí),W取最大值,且

當(dāng)時(shí),W=98

當(dāng)且僅當(dāng)

綜合①、②時(shí),W取最大值.

所以當(dāng)年產(chǎn)量為9千件時(shí),該公司在該特許商品生產(chǎn)中獲利最大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,上頂點(diǎn)為A,左右焦點(diǎn)分別為F1 , F2 , 線段OF1 , OF2的中點(diǎn)分別為B1 , B2 , 且△AB1B2是面積為4的直角三角形.

(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(2)過(guò)B1做直線l交橢圓于P,Q兩點(diǎn),使PB2⊥QB2 , 求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有4個(gè)人去參加娛樂(lè)活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇.為增加趣味性,約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.
(1)求這4個(gè)人中恰有2人去參加甲游戲的概率;
(2)求這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;
(3)用X,Y分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記ξ=|X﹣Y|,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦點(diǎn)在軸上,中心在坐標(biāo)原點(diǎn),拋物線的焦點(diǎn)在軸上,頂點(diǎn)在坐標(biāo)原點(diǎn),在、上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表格中:

(1)求、的標(biāo)準(zhǔn)方程;

(2)已知定點(diǎn),為拋物線上的一點(diǎn),其橫坐標(biāo)為,拋物線在點(diǎn)處的切線交橢圓、兩點(diǎn),求面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的普通方程和曲線的極坐標(biāo)方程;

(2)若射線與曲線,分別交于兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程ay=b2x2+c中的a,b,c∈{﹣3,﹣2,0,1,2,3},且a,b,c互不相同,在所有這些方程所表示的曲線中,不同的拋物線共有( )
A.60條
B.62條
C.71條
D.80條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若,上恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列與等比數(shù)列滿足,且.

(1)求數(shù)列,的通項(xiàng)公式;

(2)設(shè),是否存在正整數(shù),使恒成立?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“節(jié)約用水”自古以來(lái)就是中華民族的優(yōu)良傳統(tǒng).某市統(tǒng)計(jì)局調(diào)查了該市眾多家庭的用水量情況,繪制了月用水量的頻率分布直方圖,如下圖所示.將月用水量落入各組的頻率視為概率,并假設(shè)每天的用水量相互獨(dú)立.

(l)求在未來(lái)連續(xù)3個(gè)月里,有連續(xù)2個(gè)月的月用水量都不低于12噸且另1個(gè)月的月用水量低于4噸的概率;

(2)用表示在未來(lái)3個(gè)月里月用水量不低于12噸的月數(shù),求隨杌變量的分布列及數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊(cè)答案