【題目】對(duì)于任意的復(fù)數(shù),定義運(yùn)算為.
(1)設(shè)集合{均為整數(shù)},用列舉法寫出集合;
(2)若,為純虛數(shù),求的最小值;
(3)問:直線上是否存在橫坐標(biāo)、縱坐標(biāo)都為整數(shù)的點(diǎn),使該點(diǎn)對(duì)應(yīng)的復(fù)數(shù)經(jīng)運(yùn)算后,對(duì)應(yīng)的點(diǎn)也在直線上?若存在,求出所有的點(diǎn);若不存在,請(qǐng)說明理由.
【答案】(1);(2);(3)存在,或
【解析】
(1)根據(jù)題意得到,代入計(jì)算得到答案.
(2)根據(jù)計(jì)算法則得到,代入計(jì)算復(fù)數(shù)模,根據(jù)二次函數(shù)性質(zhì)得到最值.
(3)假設(shè)存在這樣的點(diǎn),計(jì)算得到,討論為奇數(shù)和為偶數(shù)兩種情況,計(jì)算得到答案.
(1)均為整數(shù),則,
,,,,,故.
(2),∵是純虛數(shù),∴且,
∴,∴,或時(shí),的最小值為.
(3)假設(shè)存在這樣的點(diǎn),設(shè)該點(diǎn)對(duì)應(yīng)的復(fù)數(shù)為,
則,
若為奇數(shù),則,∴,;
若為偶數(shù),則,∴,無解.
綜上,存在這樣的點(diǎn),坐標(biāo)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知可以表示為一個(gè)奇函數(shù)g(x)與一個(gè)偶函數(shù)h(x)之和,若不等式對(duì)于恒成立,則實(shí)數(shù)a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的右頂點(diǎn),離心率為,為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)已知(異于點(diǎn))為橢圓上一個(gè)動(dòng)點(diǎn),過作線段的垂線交橢圓于點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,為保護(hù)河上古橋OA,規(guī)劃建一座新橋BC,同時(shí)設(shè)立一個(gè)圓形保護(hù)區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護(hù)區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端O和A到該圓上任意一點(diǎn)的距離均不少于80 m.經(jīng)測(cè)量,點(diǎn)A位于點(diǎn)O正北方向60 m處,點(diǎn)C位于點(diǎn)O正東方向170 m處(OC為河岸),tan∠BCO=.
(1)求新橋BC的長;
(2)當(dāng)OM多長時(shí),圓形保護(hù)區(qū)的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以點(diǎn)C(t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)O和點(diǎn)A,與y軸交于點(diǎn)O和點(diǎn)B,其中O為原點(diǎn).
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y=-2x+4與圓C交于點(diǎn)M,N,若OM=ON,求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()的左、右焦點(diǎn)分別為,過點(diǎn)的直線交于,兩點(diǎn),的周長為, 的離心率
(Ⅰ)求的方程;
(Ⅱ)設(shè)點(diǎn),,過點(diǎn)作軸的垂線,試判斷直線與直線的交點(diǎn)是否恒在一條定直線上?若是,求該定直線的方程;否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,,,,,.
(Ⅰ)求異面直線AB與PD所成角的余弦值;
(Ⅱ)證明:平面平面PBD;
(Ⅲ)求直線DC與平面PBD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓中心在坐標(biāo)原點(diǎn),是它的兩個(gè)頂點(diǎn),直線與AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn).
(Ⅰ)若,求的值;
(Ⅱ)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市調(diào)研考試后,某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
合計(jì) | 110 |
(1)請(qǐng)完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績與班級(jí)有關(guān)系”;
參考公式與臨界值表:.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com