【題目】對(duì)于任意的復(fù)數(shù),定義運(yùn)算

1)設(shè)集合{均為整數(shù)},用列舉法寫出集合;

2)若為純虛數(shù),求的最小值;

3)問:直線上是否存在橫坐標(biāo)、縱坐標(biāo)都為整數(shù)的點(diǎn),使該點(diǎn)對(duì)應(yīng)的復(fù)數(shù)經(jīng)運(yùn)算后,對(duì)應(yīng)的點(diǎn)也在直線上?若存在,求出所有的點(diǎn);若不存在,請(qǐng)說明理由.

【答案】1;(2;(3)存在,

【解析】

1)根據(jù)題意得到,代入計(jì)算得到答案.

2)根據(jù)計(jì)算法則得到,代入計(jì)算復(fù)數(shù)模,根據(jù)二次函數(shù)性質(zhì)得到最值.

3)假設(shè)存在這樣的點(diǎn),計(jì)算得到,討論為奇數(shù)和為偶數(shù)兩種情況,計(jì)算得到答案.

1均為整數(shù),則,

,,,,故.

2,∵是純虛數(shù),∴,

,∴時(shí),的最小值為.

3)假設(shè)存在這樣的點(diǎn),設(shè)該點(diǎn)對(duì)應(yīng)的復(fù)數(shù)為,

為奇數(shù),則,∴;

為偶數(shù),則,∴,無解.

綜上,存在這樣的點(diǎn),坐標(biāo)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知可以表示為一個(gè)奇函數(shù)gx)與一個(gè)偶函數(shù)hx)之和,若不等式對(duì)于恒成立,則實(shí)數(shù)a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的右頂點(diǎn),離心率為為坐標(biāo)原點(diǎn).

)求橢圓的方程;

)已知(異于點(diǎn))為橢圓上一個(gè)動(dòng)點(diǎn),過作線段的垂線交橢圓于點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,為保護(hù)河上古橋OA,規(guī)劃建一座新橋BC,同時(shí)設(shè)立一個(gè)圓形保護(hù)區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護(hù)區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端OA到該圓上任意一點(diǎn)的距離均不少于80 m.經(jīng)測(cè)量,點(diǎn)A位于點(diǎn)O正北方向60 m,點(diǎn)C位于點(diǎn)O正東方向170 m(OC為河岸),tanBCO=.

1)求新橋BC的長;

2)當(dāng)OM多長時(shí),圓形保護(hù)區(qū)的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以點(diǎn)CtR,t0)為圓心的圓與x軸交于點(diǎn)O和點(diǎn)A,與y軸交于點(diǎn)O和點(diǎn)B,其中O為原點(diǎn).

1)求證:OAB的面積為定值;

2)設(shè)直線y=-2x4與圓C交于點(diǎn)M,N,若OMON,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的左、右焦點(diǎn)分別為,過點(diǎn)的直線,兩點(diǎn),的周長為, 的離心率

(Ⅰ)求的方程;

(Ⅱ)設(shè)點(diǎn),,過點(diǎn)軸的垂線,試判斷直線與直線的交點(diǎn)是否恒在一條定直線上?若是,求該定直線的方程;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,,,,

求異面直線ABPD所成角的余弦值;

證明:平面平面PBD;

求直線DC與平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓中心在坐標(biāo)原點(diǎn),是它的兩個(gè)頂點(diǎn),直線AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn).

)若,求的值;

)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市調(diào)研考試后,某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.

優(yōu)秀

非優(yōu)秀

合計(jì)

甲班

10

乙班

30

合計(jì)

110

1)請(qǐng)完成上面的列聯(lián)表;

2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績與班級(jí)有關(guān)系”;

參考公式與臨界值表:.

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案