【題目】橢圓的中心在原點,焦點分別在軸與軸上,它們有相同的離心率,并且的短軸為的長軸,的四個焦點構(gòu)成的四邊形面積是.

(1)求橢圓的方程;

(2)設是橢圓上非頂點的動點,與橢圓長軸兩個頂點,的連線,分別與橢圓交于,點.

(i)求證:直線,斜率之積為常數(shù);

(ii)直線與直線的斜率之積是否為常數(shù)?若是,求出該值;若不是,說明理由.

【答案】(1),.(2)(i) 見解析(ii).

【解析】試題分析:(1)橢圓離心率,又,所以,設,則根據(jù)題中條件可設,于是根據(jù)橢圓的對稱性可知,四個焦點構(gòu)成的四邊形為菱形,面積,解得,可以得到橢圓;(2)(i)本問考查圓錐曲線中的定點、定值問題,分析題意,設,而,,所以,,于是,又因為,代入上式易求;(ii)根據(jù)(i)問,可先證明為定值,再證明為定值,于是可以得到為定值,由于,,所以可以得為定值.

試題解析:(1)依題意,設,,由對稱性,四個焦點構(gòu)成的四邊形為菱形,且面積,解得:.

所以橢圓.

(2)(i)設,則,,.

,.

所以:.

直線,斜率之積為常數(shù).

(ii)設,則.

,

所以:,同理:,

所以:,由,,結(jié)合(i)有

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在心理學研究中,常采用對比試驗的方法評價不同心理暗示對人的影響,具體方法如下:將參加試驗的志愿者隨機分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對比這兩組志愿者接受心理暗示后的結(jié)果來評價兩種心理暗示的作用,現(xiàn)有6名男志愿者A1,A2A3,A4,A5,A6和4名女志愿者B1,B2B3,B4,從中隨機抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.

(I)求接受甲種心理暗示的志愿者中包含A1但不包含的頻率。

(II)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列與數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖2,四邊形為矩形, 平面, ,作如圖3折疊,折痕 ,其中點分別在線段上,沿折疊后點疊在線段上的點記為,并且.1)證明: 平面;

2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)濟學中,函數(shù)f(x)的邊際函數(shù)M(x)定義為M(x)=f(x+1)﹣f(x),利潤函數(shù)p(x)邊際利潤函數(shù)定義為M1(x)=p(x+1)﹣p(x),某公司最多生產(chǎn) 100 臺報系統(tǒng)裝置,生產(chǎn)x臺的收入函數(shù)為R(x)=3000x﹣20x2(單位:元),其成本函數(shù)為C(x)=500x+4000x(單位:元),利潤是收入與成本之差.
(1)求利潤函數(shù)p(x)及邊際利潤函數(shù)M1(x);
(2)利潤函數(shù)p(x)與邊際利潤函數(shù)M1(x)是否具有相等的最大值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為,且過點.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點任作一條直線與橢圓相交于,兩點,試問在軸上是否存在定點,使得直線與直線關于軸對稱?若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當x>0時,f(x)=( x
(1)求函數(shù)f(x)的解析式;
(2)在所給坐標系中畫出函數(shù)f(x)的圖象,并根據(jù)圖象寫出函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),

(1)當時,求函數(shù)的單調(diào)區(qū)間;

(2)當, 時,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)y=f(x)在區(qū)間上[0,1]的圖象是連續(xù)不斷的一條曲線,且恒有0≤f(x)≤1,可以用隨機模擬方法近似計算出曲線y=f(x)及直線x=0,x﹣1=0,y=0所圍成部分的面積S,先產(chǎn)生兩組(每組N個)區(qū)間[0,1]上的均勻隨機數(shù)X1 , X2 , X3 , XN和y1 , y2 , y3 , yN , 由此得到N個點(xi , yi)(i=1,2,3N,再數(shù)出其中滿足yi≤f(xi)(i=1,2,3,N)的點數(shù)N1 , 那么由隨機方法可以得到S的近似值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學舉行了一次“環(huán)保只知識競賽”,全校學生參加了這次競賽.為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取正整數(shù),滿分為 分)作為樣本進行統(tǒng)計.請根據(jù)下面尚未完成并有局部污損的頻率分布表(如圖所示),解決下列問題.

(1)求出的值;

(2)在選取的樣本中,從競賽成績是 分以上(含 分)的同學中隨機抽取 名同學到廣場參加環(huán)保只是的志愿宣傳活動.

1)求所抽取的 名同學中至少有 名同學來自第 組的概率;

2)求所抽取的 名同學來自同一組的概率.

查看答案和解析>>

同步練習冊答案