【題目】某中學(xué)舉行了一次“環(huán)保只知識競賽”,全校學(xué)生參加了這次競賽.為了了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取正整數(shù),滿分為 分)作為樣本進(jìn)行統(tǒng)計.請根據(jù)下面尚未完成并有局部污損的頻率分布表(如圖所示),解決下列問題.
(1)求出的值;
(2)在選取的樣本中,從競賽成績是 分以上(含 分)的同學(xué)中隨機(jī)抽取 名同學(xué)到廣場參加環(huán)保只是的志愿宣傳活動.
1)求所抽取的 名同學(xué)中至少有 名同學(xué)來自第 組的概率;
2)求所抽取的 名同學(xué)來自同一組的概率.
【答案】(1) , ;(2)1) ;2) .
【解析】試題分析:(1)利用頻率分布表和頻率分布直方圖,由題意能求出a,b,x,y的值;(2)(ⅰ)由題意可知,第4組共有4人,記為A,B,C,D,第5組共有2人,記為X,Y.從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué),有15種情況由此能求出隨機(jī)抽取的2名同學(xué)中至少有1名同學(xué)來自第5組的概率;(ⅱ)設(shè)“隨機(jī)抽取的2名同學(xué)來自同一組”為事件F,有AB,AC,AD,BC,BD,CD,XY共7種情況,由此能求出隨機(jī)抽取的2名同學(xué)來自同一組的概率.
試題解析:
(1)由題意可知,樣本總?cè)藬?shù)為,∴, , .
(2)1)由題意可知,第 組共有 人,記為,第 組共有 人,記為.從競賽成績是 分以上(含 分)的同學(xué)中抽取 名同學(xué)有, , 共 種情況.設(shè)“隨機(jī)抽取的 名同學(xué)中至少有 名同學(xué)來自第 組”為事件,有共 種情況.所以.即隨機(jī)抽取的 名同學(xué)中至少有 名同學(xué)來自第 組的概率是.
2)設(shè)“隨機(jī)抽取的 名同學(xué)來自同一組”為事件,有共 種情況.所以.即隨機(jī)抽取的 名同學(xué)來自同一組的概率是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓與的中心在原點(diǎn),焦點(diǎn)分別在軸與軸上,它們有相同的離心率,并且的短軸為的長軸,與的四個焦點(diǎn)構(gòu)成的四邊形面積是.
(1)求橢圓與的方程;
(2)設(shè)是橢圓上非頂點(diǎn)的動點(diǎn),與橢圓長軸兩個頂點(diǎn),的連線,分別與橢圓交于,點(diǎn).
(i)求證:直線,斜率之積為常數(shù);
(ii)直線與直線的斜率之積是否為常數(shù)?若是,求出該值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) = , =(4sinx,cosx﹣sinx),f(x)= .
(1)求函數(shù)f(x)的解析式;
(2)已知常數(shù)ω>0,若y=f(ωx)在區(qū)間 是增函數(shù),求ω的取值范圍;
(3)設(shè)集合A= ,B={x||f(x)﹣m|<2},若AB,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)生趙敏利用寒假參加社會實(shí)踐,對機(jī)械銷售公司7月份至11月份銷售某種機(jī)械配件的銷售量及銷售單價進(jìn)行了調(diào)查,銷售單價x元和銷售量y件之間的一組數(shù)據(jù)如表所示:
月份 | 7 | 8 | 9 | 10 | 11 |
銷售單價x元 | 9 | 9.5 | 10 | 10.5 | 11 |
銷售量y件 | 11 | 10 | 8 | 6 | 5 |
(1)根據(jù)7至11月份的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;
(2)預(yù)計在今后的銷售中,銷售量與銷售單價仍然服從(1)中的關(guān)系,若該種機(jī)器配件的成本是2.5元/件,那么該配件的銷售單價應(yīng)定為多少元才能獲得最大利潤? 參考公式:回歸直線方程 =b +a,其中b= .
參考數(shù)據(jù): =392, =502.5.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f′(x)sinx+f(x)cosx>0且f( )=1,則f(x)sinx≤1的整數(shù)解的集合為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一(1)班全體男生的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖甲所示,據(jù)此解答如下問題:
(1)求該班全體男生的人數(shù);
(2)求分?jǐn)?shù)在[80,90)之間的男生人數(shù),并計算頻率公布直方圖如圖乙中[80,90)之間的矩形的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面α及直線a,b,則下列說法正確的是( )
A.若直線a,b與平面α所成角都是30°,則這兩條直線平行
B.若直線a,b與平面α所成角都是30°,則這兩條直線不可能垂直
C.若直線a,b平行,則這兩條直線中至少有一條與平面α平行
D.若直線a,b垂直,則這兩條直線與平面α不可能都垂直
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題。
(1)求函數(shù)f(x)=x2﹣2x+2.在區(qū)間[ ,3]上的最大值和最小值;
(2)已知f(x)=ax3+bx﹣4,若f(2)=6,求f(﹣2)的值
(3)計算0.0081 +(4 )2+( ) ﹣16﹣0.75+3 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com