【題目】已知三棱柱,三個側面均為矩形,底面為等腰直角三角形, ,為棱的中點,在棱上運動.

1)求證 ;

2)當點運動到某一位置時,恰好使二面角的平面角的余弦值為,求點到平面的距離;

3)在(2)的條件下,試確定線段上是否存在一點,使得平面?若存在,確定其位置;若不存在,說明理由.

【答案】1)見解析;(2;(3)存在,為中點.

【解析】

1)以CBx軸,CAy軸,CC1z軸,C為原點建立坐標系,設Em,0,2),要證A1CAE,可證,只需證明,利用向量的數(shù)量積運算即可證明;(2)分別求出平面EA1D、平面A1DB的一個法向量,由兩法向量夾角余弦值的絕對值等于,解得m值,由此可得答案;(3)在(2)的條件下,設Fx,y0),可知與平面A1DB的一個法向量平行,由此可求出點F坐標,進而求出||,即得答案.

1)以CBx軸,CAy軸,CC1z軸,C為原點建立坐標系,設Em,0,2),

C0,00),A0,2,0),A10,2,2),D0,01),B20,0),

=(0,﹣2,﹣2),=(m,﹣22),

因為0+(﹣2×(﹣2)﹣2×20,

所以,即A1CAE;

2=(m,0,1),=(0,2,1),

=(xy,z)為平面EA1D的一個法向量,

,取=(2m,﹣2m),

=(2,0,﹣1),設=(xy,z)為平面A1DB的一個法向量,

,即,取=(1,﹣1,2),

由二面角EA1DB的平面角的余弦值為 ,得 ||,解得m1,

平面A1DB的一個法向量=(1,﹣1,2),根據(jù)點E到面的距離為:.

3)由(2)知E1,0,2),且=(1,﹣1,2)為平面A1DB的一個法向量,

Fx,y,0),則=(x1,y,﹣2),且,所以x1=﹣1y1,解得x0,y1

所以=(﹣1,1,﹣2),

EF的長度為,此時點F01,0).存在F點為AC中點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,四邊形為梯形, ,且 是邊長為2的正三角形,頂點上的射影為點,且 , .

(1)證明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列中, , .

(1)求的通項公式;

(2)設,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓與直線y=x-2相切,設橢圓的上頂點為M 是橢圓的左右焦點,且M為等腰直角三角形。(1)求橢圓的標準方程;(2)直線l過點N0-)交橢圓于A,B兩點,直線MAMB分別與橢圓的短軸為直徑的圓交于S,T兩點,求證:OS、T三點共線。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln(x+1)-mx(mR)。(1)m>0,討論f(x)的單調性;(2)令g(x)=f(x-1)+(2m+1)x+n,g(x)有兩個零點,,求證: <

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代數(shù)學成就的杰出代表作,其中《方田》章給出計算弧田面積所用的經驗方式為:弧田面積=,弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”指半徑長與圓心到弦的距離之差,F(xiàn)有圓心角為,半徑等于4米的弧田.下列說法正確的是( )

A. “弦”米,“矢”

B. 按照經驗公式計算所得弧田面積()平方米

C. 按照弓形的面積計算實際面積為()平方米

D. 按照經驗公式計算所得弧田面積比實際面積少算了大約0.9平方米(參考數(shù)據(jù) )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)討論函數(shù)的單調區(qū)間;

(Ⅱ)若函數(shù)處取得極值,對, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中),(其中為自然對數(shù)的底數(shù)).

(1)若曲線處的切線與直線垂直,求的單調區(qū)間和極值;

(2)若對任意,總存在使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為常數(shù),函數(shù).

1)當時,求關于的不等式的解集;

2)當時,若函數(shù)上存在零點,求實數(shù)的取值范圍;

3)對于給定的,且,,證明:關于的方程在區(qū)間內有一個實數(shù)根.

查看答案和解析>>

同步練習冊答案