【題目】某學(xué)校為鼓勵(lì)家校互動(dòng),與某手機(jī)通訊商合作,為教師辦理流量套餐.為了解該校教師手機(jī)流量使用情況,通過抽樣,得到位教師近年每人手機(jī)月平均使用流量(單位:)的數(shù)據(jù),其頻率分布直方圖如下:
若將每位教師的手機(jī)月平均使用流量分別視為其手機(jī)月使用流量,并將頻率為概率,回答以下問題.
(Ⅰ) 從該校教師中隨機(jī)抽取人,求這人中至多有人月使用流量不超過 的概率;
(Ⅱ) 現(xiàn)該通訊商推出三款流量套餐,詳情如下:
套餐名稱 | 月套餐費(fèi)(單位:元) | 月套餐流量(單位:) |
這三款套餐都有如下附加條款:套餐費(fèi)月初一次性收取,手機(jī)使用一旦超出套餐流量,系統(tǒng)就自動(dòng)幫用戶充值 流量,資費(fèi)元;如果又超出充值流量,系統(tǒng)就再次自動(dòng)幫用戶充值 流量,資費(fèi)元/次,依次類推,如果當(dāng)月流量有剩余,系統(tǒng)將自動(dòng)清零,無法轉(zhuǎn)入次月使用.
學(xué)校欲訂購(gòu)其中一款流量套餐,為教師支付月套餐費(fèi),并承擔(dān)系統(tǒng)自動(dòng)充值的流量資費(fèi)的,其余部分由教師個(gè)人承擔(dān),問學(xué)校訂購(gòu)哪一款套餐最經(jīng)濟(jì)?說明理由.
【答案】(1)0.784.
(2) 學(xué)校訂購(gòu)套餐最經(jīng)濟(jì).
【解析】
(Ⅰ)先求得該教師手機(jī)月使用流量不超過的概率為.
利用互斥事件的概率和獨(dú)立重復(fù)試驗(yàn)的概率求這人中至多有人月使用流量不超過的概率. (Ⅱ)先分別求出三種套餐的期望,再比較它們的大小即得解.
(Ⅰ)由直方圖可知,從該校中隨機(jī)抽取一名教師,該教師手機(jī)月使用流量不超過
的概率為.
設(shè)“從該校教師中隨機(jī)抽取人,至多有人月使用流量不超過”為事件,
則.
(Ⅱ)依題意, ,
.
當(dāng)學(xué)校訂購(gòu)套餐時(shí),設(shè)學(xué)校為一位教師承擔(dān)的月費(fèi)用為的所有可能取值為,,,
且,,,
所以(元)
當(dāng)學(xué)校訂購(gòu)套餐時(shí),設(shè)學(xué)校為一位教師承擔(dān)的月費(fèi)用為的所有可能取值為,,
且,,
所以(元)
當(dāng)學(xué)校訂購(gòu)套餐時(shí),設(shè)學(xué)校為一位教師承擔(dān)的月費(fèi)用為的所有可能取值為,
且,(元)
因?yàn)?/span>,所以學(xué)校訂購(gòu)套餐最經(jīng)濟(jì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“五四青年節(jié)”到來之際,啟東中學(xué)將開展一系列的讀書教育活動(dòng).為了解高二學(xué)生讀書教育情況,決定采用分層抽樣的方法從高二年級(jí)四個(gè)社團(tuán)中隨機(jī)抽取12名學(xué)生參加問卷調(diào)査.已知各社團(tuán)人數(shù)統(tǒng)計(jì)如下:
(1)若從參加問卷調(diào)查的12名學(xué)生中隨機(jī)抽取2名,求這2名學(xué)生來自同一個(gè)社團(tuán)的概率;
(2)在參加問卷調(diào)查的12名學(xué)生中,從來自三個(gè)社團(tuán)的學(xué)生中隨機(jī)抽取3名,用表示從社團(tuán)抽得學(xué)生的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查乘客的候車情況,公交公司在某站臺(tái)的60名候車乘客中隨機(jī)抽取15人,將他們的候車時(shí)間(單位:分鐘)作為樣本分成5組,如表所示:
組別 | 候車時(shí)間 | 人數(shù) |
一 | 2 | |
二 | 6 | |
三 | 4 | |
四 | 2 | |
五 | 1 |
(1)估計(jì)這60名乘客中候車時(shí)間少于10分鐘的人數(shù);
(2)若從上表第三、四組的6人中隨機(jī)抽取2人作進(jìn)一步的問卷調(diào)查,求抽到的兩人恰好來自同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線y=x2+mx–2與x軸交于A,B兩點(diǎn),點(diǎn)C的坐標(biāo)為(0,1).當(dāng)m變化時(shí),解答下列問題:
(1)能否出現(xiàn)AC⊥BC的情況?說明理由;
(2)證明過A,B,C三點(diǎn)的圓在y軸上截得的弦長(zhǎng)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)命題的說法正確的是___(請(qǐng)?zhí)顚懰姓_的命題序號(hào)).
①命題“若,則”的否命題為:“若,則”;
②命題“若,則”的逆否命題為真命題;
③條件,條件,則是的充分不必要條件;
④已知時(shí),,若是銳角三角形,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且滿足,,.各項(xiàng)均為正數(shù)的等比數(shù)列滿足,.
(1)求數(shù)列、的通項(xiàng)公式;
(2)若,數(shù)列的前項(xiàng)和.
①求;
②若對(duì)任意,,均有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
在如圖所示的多面體中,四邊形和都為矩形。
(Ⅰ)若,證明:直線平面;
(Ⅱ)設(shè), 分別是線段, 的中點(diǎn),在線段上是否存在一點(diǎn),使直線平面?請(qǐng)證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
設(shè)是函數(shù)的圖象上任意兩點(diǎn),且,已知點(diǎn)的橫坐標(biāo)為.
(1)求證:點(diǎn)的縱坐標(biāo)為定值;
(2)若求;
(3)已知=,其中,為數(shù)列的前項(xiàng)和,若對(duì)一切都成立,試求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com