【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:萬元)對年銷售量(單位:噸)和年利潤(單位:萬元)的影響。對近六年的年宣傳費(fèi)和年銷售量的數(shù)據(jù)作了初步統(tǒng)計,得到如下數(shù)據(jù):
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年宣傳費(fèi)(萬元) | 38 | 48 | 58 | 68 | 78 | 88 |
年銷售量(噸) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(fèi)(萬元)與年銷售量(噸)之間近似滿足關(guān)系式即。對上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;
(2)規(guī)定當(dāng)產(chǎn)品的年銷售量(噸)與年宣傳費(fèi)(萬元)的比值在區(qū)間內(nèi)時認(rèn)為該年效益良好,F(xiàn)從這6年中任選3年,記其中選到效益良好年的數(shù)量為,試求隨機(jī)變量的分布列和期望。(其中為自然對數(shù)的底數(shù), )
附:對于一組數(shù)據(jù),其回歸直線中的斜率和截距的最小二乘估計分別為
【答案】(1) ;(2)見解析.
【解析】【試題分析】(1)先運(yùn)用轉(zhuǎn)化的思想對兩邊取對數(shù)得,再換元令
得,借助題設(shè)中給的數(shù)據(jù),求得: , 進(jìn)而算得
, ,于是
, ,得,故所求回歸方程為。
(2)先借助題設(shè)條件,于是求出,即6年中有三年是“效益良好年”, 求得, ,從而求出分布列和數(shù)學(xué)期望。
解:(1)對兩邊取對數(shù)得,令
得,由題給數(shù)據(jù),得: , 2分
, ,于是
, ,得,故所求回歸方程為。
(2)由,于是,即6年中有三年是“效益良好年”, ,由題得,
所以 的分布列如表所示,且 。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)設(shè)函數(shù).若對于任意,都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)φ(x)=,a為正常數(shù).
(Ⅰ)若f(x)=ln x+φ(x),且a=4,討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若g(x)=|ln x|+φ(x),且對任意x1,x2∈(0,2],x1≠x2都有
(ⅰ)求實(shí)數(shù)a的取值范圍;
(ⅱ)求證:當(dāng)x∈(0,2]時,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線 (t為參數(shù)), ( 為參數(shù)).
(1)化 的方程為普通方程;
(2)若 上的點(diǎn)對應(yīng)的參數(shù)為 ,Q為 上的動點(diǎn),求PQ中點(diǎn)M到直線(t為參數(shù))距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標(biāo)系xOy中,圓錐曲線C的參數(shù)方程為 (θ為參數(shù)),直線l經(jīng)過定點(diǎn)P(2,3),傾斜角為 .
(1)寫出直線l的參數(shù)方程和圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l與圓相交于A,B兩點(diǎn),求|PA|·|PB|的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y=x3與y=( )x﹣2的圖象的交點(diǎn)為(x0 , y0),則x0所在的區(qū)間是( )
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某烹飪學(xué)院為了弘揚(yáng)中國傳統(tǒng)的飲食文化,舉辦了一場由在校學(xué)生參加的廚藝大賽,組委會為了了解本次大賽參賽學(xué)生的成績情況,從參賽學(xué)生中抽取了n名學(xué)生的成績(滿分100分)作為樣本,將所得數(shù)經(jīng)過分析整理后畫出了評論分布直方圖和莖葉圖,其中莖葉圖受到污染,請據(jù)此解答下列問題:
(1)求頻率分布直方圖中a,b的值;
(2)規(guī)定大賽成績在[80,90)的學(xué)生為廚霸,在[90,100]的學(xué)生為廚神,現(xiàn)從被稱為廚霸、廚神的學(xué)生中隨機(jī)抽取2人取參加校際之間舉辦的廚藝大賽,求所取2人總至少有1人是廚神的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,拋物線的方程為.
(1)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,求的極坐標(biāo)方程;
(2)直線的參數(shù)方程是(為參數(shù)),與交于兩點(diǎn), ,求的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義域?yàn)镽的函數(shù) (a,b為實(shí)數(shù)).
(1)若f(x)是奇函數(shù),求a,b的值;
(2)當(dāng)f(x)是奇函數(shù)時,證明對任何實(shí)數(shù)x,c都有f(x)<c2﹣3c+3成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com