【題目】已知函數(shù)

(Ⅰ)若,求曲線在點處的切線方程;

(Ⅱ)求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)設函數(shù).若對于任意,都有成立,求實數(shù)的取值范圍.

【答案】(1) ;(2)當時,函數(shù)的增區(qū)間為 ,減區(qū)間為

時,函數(shù)的增區(qū)間為 ,減區(qū)間為

時,函數(shù)的增區(qū)間為,無減區(qū)間;(3).

【解析】試題分析:(Ⅰ) 求出,可得切線斜率,根據(jù)點斜式可得切線方程;(Ⅱ)討論三種情況,分別令得增區(qū)間, 得減區(qū)間; (Ⅲ)對于任意,都有成立等價于恒成立,利用導數(shù)研究函數(shù)的單調(diào)性,求出其最大值,進而可得結(jié)果.

試題解析:(函數(shù)的定義域為.

時, ,

,

所以曲線在點處的切線方程為.

(Ⅱ)因為

,即,解得.

(1)當,即時,

,得;

,得.

所以函數(shù)的增區(qū)間為, ,減區(qū)間為.

(2)當,即時,

,得;

,得.

所以函數(shù)的增區(qū)間為, ,減區(qū)間為.

(3)當,即時, 上恒成立,

所以函數(shù)的增區(qū)間為,無減區(qū)間.

綜上所述:

時,函數(shù)的增區(qū)間為, ,減區(qū)間為;

時,函數(shù)的增區(qū)間為, ,減區(qū)間為;

時,函數(shù)的增區(qū)間為,無減區(qū)間.

(Ⅲ)因為對于任意,都有成立,

,等價于.

,則當時, .

.

因為當時, ,所以上單調(diào)遞增.

所以.

所以.

所以.

【方法點晴】本題主要考查利用導數(shù)求曲線切線以及利用導數(shù)研究函數(shù)的單調(diào)性、不等式恒成立問題,屬于難題.求曲線切線方程的一般步驟是:(1)求出處的導數(shù),即在點 出的切線斜率(當曲線處的切線與軸平行時,在 處導數(shù)不存在,切線方程為);(2)由點斜式求得切線方程.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,平面四邊形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,AD⊥ED,AF∥DE,AB∥CD,CD=2AB=2AD=2ED=xAF.
(Ⅰ)若四點F、B、C、E共面,AB=a,求x的值;
(Ⅱ)求證:平面CBE⊥平面EDB;
(Ⅲ)當x=2時,求二面角F﹣EB﹣C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=2x﹣cosx,{an}是公差為 的等差數(shù)列,f(a1)+f(a2)+…+f(a5)=5π,則[f(a3)]2﹣a1a5=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)討論的單調(diào)性;

(2)當時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100 個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg).其頻率分布直方圖如下:

(1)設兩種養(yǎng)殖方法的箱產(chǎn)量相互獨立,記A表示事件:“舊養(yǎng)殖法的箱產(chǎn)量低于50kg,新養(yǎng)殖法的箱產(chǎn)量不低于50kg”,估計A的概率;

(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關(guān):

箱產(chǎn)量<50kg

箱產(chǎn)量≥50kg

舊養(yǎng)殖法

新養(yǎng)殖法

(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計值(精確到0.01).

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用數(shù)學歸納法證明:12﹣22+32﹣42+…+(﹣1)n1n2=(﹣1)n1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若a,b在區(qū)間(0,1)內(nèi),則橢圓 =1(a>b>0)與直線l:x+y=1在第一象限內(nèi)有兩個不同的交點的概率為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知| |=4,| |=8,| |=4
(1)計算:① ,②|4 ﹣2 |
(2)若( +2 )⊥(k ),求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:萬元)對年銷售量(單位:噸)和年利潤(單位:萬元)的影響。對近六年的年宣傳費和年銷售量的數(shù)據(jù)作了初步統(tǒng)計,得到如下數(shù)據(jù):

年份

2011

2012

2013

2014

2015

2016

年宣傳費(萬元)

38

48

58

68

78

88

年銷售量(噸)

168

188

207

224

240

255

經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(萬元)與年銷售量(噸)之間近似滿足關(guān)系式。對上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如下表:

753

246

183

1014

1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;

2)規(guī)定當產(chǎn)品的年銷售量(噸)與年宣傳費(萬元)的比值在區(qū)間內(nèi)時認為該年效益良好,F(xiàn)從這6年中任選3年,記其中選到效益良好年的數(shù)量為,試求隨機變量的分布列和期望。(其中為自然對數(shù)的底數(shù),

附:對于一組數(shù)據(jù),其回歸直線中的斜率和截距的最小二乘估計分別為

查看答案和解析>>

同步練習冊答案