【題目】已知a,b,c為△ABC的三個內(nèi)角A,B,C的對邊,向量=( , ﹣1),=(cosA,sinA).若 , 且αcosB+bcosA=csinC,則角A,B的大小分別為( 。
A.,
B.,
C.,
D.,

【答案】C
【解析】解:根據(jù)題意, , 可得=0,
cosA﹣sinA=0,
∴A= ,
又由正弦定理可得,sinAcosB+sinBcosA=sin2C,
sinAcosB+sinBcosA=sin(A+B)=sinC=sin2C,
C= , ∴B=
故選C.
【考點精析】通過靈活運用數(shù)量積判斷兩個平面向量的垂直關(guān)系和三角函數(shù)的積化和差公式,掌握若平面的法向量為,平面的法向量為,要證,只需證,即證;即:兩平面垂直兩平面的法向量垂直;三角函數(shù)的積化和差公式:;即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)y=f(x)是減函數(shù),且對任意的a∈R,都有f(﹣a)+f(a)=0,若x、y滿足不等式f(x2﹣2x)+f(2y﹣y2)≤0,則當(dāng)1≤x≤4時,x﹣3y的最大值為(
A.10
B.8
C.6
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面四邊形是矩形,平面分別是的中點,.

(1)求證:平面

(2)求二面角的大。

(3)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一兒童游樂場擬建造一個“蛋筒”型游樂設(shè)施,其軸截面如圖中實線所示. 是等腰梯形, 米, 的延長線上, 為銳角). 圓都相切,且其半徑長為米. 是垂直于的一個立柱,則當(dāng)的值設(shè)計為多少時,立柱最矮?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的右頂點為,左、右焦點分別為、,過點

且斜率為的直線與軸交于點, 與橢圓交于另一個點,且點軸上的射影恰好為點

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過點且斜率大于的直線與橢圓交于兩點(),若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A(3,0),B(0,3)C(cosα,sinα),O為原點.
(1)若 , 求tanα的值;
(2)若 , 求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科研機(jī)構(gòu)研發(fā)了某種高新科技產(chǎn)品,現(xiàn)已進(jìn)入實驗階段.已知實驗的啟動資金為10萬元,從實驗的第一天起連續(xù)實驗,第天的實驗需投入實驗費用為,實驗30天共投入實驗費用17700元.

(1)求的值及平均每天耗資最少時實驗的天數(shù);

(2)現(xiàn)有某知名企業(yè)對該項實驗進(jìn)行贊助,實驗天共贊助.為了保證產(chǎn)品質(zhì)量,至少需進(jìn)行50天實驗,若要求在平均每天實際耗資最小時結(jié)束實驗,求的取值范圍.(實際耗資=啟動資金+試驗費用-贊助費)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.
(1)求證:平面ABC1⊥平面A1ACC1;
(2)設(shè)D是線段BB1的中點,求三棱錐D﹣ABC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從高一年級學(xué)生中隨機(jī)抽取40名中學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段: , ,…, ,得到如圖所示的頻率分布直方圖.

(1)求圖中實數(shù)的值;

(2)若該校高一年級共有640人,試估計該校高一年級期中考試數(shù)學(xué)成績不低于60分的人數(shù);

(3)若從數(shù)學(xué)成績在兩個分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績之差的絕對值不大于10的概率.

查看答案和解析>>

同步練習(xí)冊答案