【題目】已知等差數(shù)列滿足點(diǎn)在直線上.
(1)求數(shù)列的通項(xiàng)公式;
(2),求數(shù)列的前n項(xiàng)和.
【答案】(1) an=n ,(2)n2n+2n+2﹣4
【解析】
(1)設(shè)等差數(shù)列{an}的公差為d,運(yùn)用等差數(shù)列的通項(xiàng)公式,解方程可得首項(xiàng)和公差,即可得到所求通項(xiàng)公式;
(2)求得n+2n+1,運(yùn)用數(shù)列的求和方法:分組求和,結(jié)合等差數(shù)列和等比數(shù)列的求和公式,即可得到所求和.
解:(1)設(shè)等差數(shù)列{an}的公差為d,
因?yàn)辄c(diǎn)(a4,a6)在直線x+2y﹣16=0上,所以a4+2a6=16,
又因?yàn)?/span>a2=2,
所以,
解得a1=1,d=1.
所以an=a1+(n﹣1)d=1+(n﹣1)1=n.
故數(shù)列{an}的通項(xiàng)公式為an=n;
(2)由(1)可得n+2n+1,
所以數(shù)列{bn}的前n項(xiàng)和Sn=(1+2+…+n)+(22+23+…+2n+1)
n(n+1)n2n+2n+2﹣4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐的底面是梯形,,,,,在棱上且.
(1)證明:平面;
(2)若平面,異面直線與所成角的余弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義在 上的偶函數(shù),當(dāng)時(shí), ).
(1)當(dāng)時(shí),求的解析式;
(2)若,試判斷的上單調(diào)性,并證明你的結(jié)論;
(3)是否存在,使得當(dāng)時(shí), 有最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年秋季,我省高一年級全面實(shí)行新高考政策,為了調(diào)查學(xué)生對新政策的了解情況,準(zhǔn)備從某校高一三個(gè)班級抽取10名學(xué)生參加調(diào)查.已知三個(gè)班級學(xué)生人數(shù)分別為40人,30人,30人.考慮使用簡單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣三種方案,使用簡單隨機(jī)抽樣和分層抽樣時(shí),將學(xué)生按三個(gè)班級依次統(tǒng)一編號為1,2,…,100;使用系統(tǒng)抽樣,將學(xué)生統(tǒng)一編號為1,2,…,100,并將整個(gè)編號依次分為10段.如果抽得的號碼有下列四種情況:
①7,17,27,37,47,57,67,77,87,97;②3,9,15,33,43,53,65,75,85,95;
③9,19,29,39,49,59,69,79,89,99,;④2,12,22,32,42,52,62,73,83,96.
關(guān)于上述樣本的下列結(jié)論中,正確的是( )
A. ①③都可能為分層抽樣 B. ②④都不能為分層抽樣
C. ①④都可能為系統(tǒng)抽樣 D. ②③都不能為系統(tǒng)抽樣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解我市參加2018年全國高中數(shù)學(xué)聯(lián)賽的學(xué)生考試結(jié)果情況,從中選取60名同學(xué)將其成績(百分制,均為正數(shù))分成六組后,得到部分頻率分布直方圖(如圖),觀察圖形,回答下列問題:
(1)求分?jǐn)?shù)在內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)根據(jù)頻率分布直方圖,估計(jì)本次考試成績的眾數(shù)、均值;
(3)根據(jù)評獎(jiǎng)規(guī)則,排名靠前10%的同學(xué)可以獲獎(jiǎng),請你估計(jì)獲獎(jiǎng)的同學(xué)至少需要所少分?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游景點(diǎn)有50輛自行車供游客租賃使用,管理這些自行車的費(fèi)用是每日115元。根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超過6元,則每提高1元,租不出去的自行車就增加3輛.規(guī)定:每輛自行車的日租金不超過20元,每輛自行車的日租金元只取整數(shù),并要求出租所有自行車一日的總收入必須超過一日的管理費(fèi)用,用表示出租所有自行車的日凈收入(即一日中出租所以自行車的總收入減去管理費(fèi)用后的所得).
(1)求函數(shù)的解析式及定義域;
(2)試問日凈收入最多時(shí)每輛自行車的日租金應(yīng)定為多少元?日凈收入最多為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),若不等式在上恒成立,求實(shí)數(shù)的取值范圍;
(2)若為常數(shù),且函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)命題:
①如果平面外一條直線與平面內(nèi)一條直線平行,那么;
②過空間一定點(diǎn)有且只有一條直線與已知平面垂直;
③如果一條直線垂直于一個(gè)平面內(nèi)的無數(shù)條直線,那么這條直線與這個(gè)平面垂直;
④若兩個(gè)相交平面都垂直于第三個(gè)平面,則這兩個(gè)平面的交線垂直于第三個(gè)平面.
其中真命題的個(gè)數(shù)為
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是平行四邊形所在平面外一點(diǎn),如果,,.(1)求證:是平面的法向量;
(2)求平行四邊形的面積.
【答案】(1)證明見解析;(2).
【解析】試題分析:
(1)由題意結(jié)合空間向量數(shù)量積的運(yùn)算法則計(jì)算可得,.則,,結(jié)合線面垂直的判斷定理可得平面,即是平面的法向量.
(2)利用平面向量的坐標(biāo)計(jì)算可得,,,則,,.
試題解析:
(1)∵,
.
∴,,又,∴平面,
∴是平面的法向量.
(2)∵ ,,
∴,
∴,
故, .
【題型】解答題
【結(jié)束】
19
【題目】(1)求圓心在直線上,且與直線相切于點(diǎn)的圓的方程;
(2)求與圓外切于點(diǎn)且半徑為的圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com