【題目】已知點是平行四邊形所在平面外一點,如果,.(1)求證:是平面的法向量;

(2)求平行四邊形的面積.

【答案】(1)證明見解析;(2).

【解析】試題分析:

(1)由題意結(jié)合空間向量數(shù)量積的運算法則計算可得,.,,結(jié)合線面垂直的判斷定理可得平面,是平面的法向量.

(2)利用平面向量的坐標計算可得,,,.

試題解析:

(1)

.

,,又平面,

是平面的法向量.

(2) ,

,

.

型】解答
結(jié)束】
19

【題目】(1)求圓心在直線,且與直線相切于點的圓的方程;

(2)求與圓外切于點且半徑為的圓的方程.

【答案】(1);(2).

【解析】試題分析:

(1)由題意可得圓的一條直徑所在的直線方程為,據(jù)此可得圓心,半徑,則所求圓的方程為.

(2)圓的標準方程為,得該圓圓心為,半徑為,兩圓連心線斜率.設(shè)所求圓心為結(jié)合弦長公式可得,.則圓的方程為.

試題解析:

(1)過點且與直線垂直的直線為

.

即圓心,半徑

所求圓的方程為.

(2)圓方程化為,得該圓圓心為,半徑為,故兩圓連心線斜率.設(shè)所求圓心為,

,

.

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列滿足在直線上.

1)求數(shù)列的通項公式;

(2),求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四位同學(xué)參加比賽,只有其中三位獲獎.甲說:“乙或丙未獲獎”;乙說:“甲、丙都獲獎”;丙說:“我未獲獎”;丁說:“乙獲獎”.四位同學(xué)的話恰有兩句是對的,則( )

A. 甲和乙不可能同時獲獎 B. 丙和丁不可能同時獲獎

C. 乙和丁不可能同時獲獎 D. 丁和甲不可能同時獲獎

【答案】C

【解析】若甲乙丙同時獲獎,則甲丙的話錯,乙丁的話對;符合題意;

若甲乙丁同時獲獎,則乙的話錯,甲丙丁的話對;不合題意;

若甲丙丁同時獲獎,則丙丁的話錯,甲乙的話對;符合題意;;

若丙乙丁同時獲獎,則甲乙丙的話錯,丁的話對;不合題意;

因此乙和丁不可能同時獲獎,選C.

型】單選題
結(jié)束】
12

【題目】已知當時,關(guān)于的方程有唯一實數(shù)解,則值所在的范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與與課外體育鍛煉時間的關(guān)系,對該校200名高三學(xué)生的課外體育鍛煉平均每天運動的時間進行調(diào)查,如下表:(平均每天鍛煉的時間單位:分鐘)

將學(xué)生日均課外體育運動時間在上的學(xué)生評價為“課外體育達標”.

平均每天鍛煉的時間(分鐘)

總?cè)藬?shù)

20

36

44

50

40

10

請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過的前提下認為“課外體育達標”與性別有關(guān)?

課外體育不達標

課外體育達標

合計

20

110

合計

從上述200名學(xué)生中,按“課外體育達標”、“課外體育不達標”分層抽樣,抽取4人得到一個樣本,再從這個樣本中抽取2人,求恰好抽到一名“課外體育不達標”學(xué)生的概率.

參考公式:,其中.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某鎮(zhèn)在政府精準扶貧的政策指引下,充分利用自身資源,大力發(fā)展養(yǎng)殖業(yè),以增加收入,政府計劃共投入72萬元,全部用于甲、乙兩個合作社,每個合作社至少要投入15萬元,其中甲合作社養(yǎng)魚,乙合作社養(yǎng)雞,在對市場進行調(diào)研分析發(fā)現(xiàn)養(yǎng)魚的收益M、養(yǎng)雞的收益N與投入a(單位:萬元)滿足Na+20.設(shè)甲合作社的投入為x(單位:萬元),兩個合作社的總收益為fx)(單位:萬元).

1)當甲合作社的投入為25萬元時,求兩個合作社的總收益;

2)試問如何安排甲、乙兩個合作社的投入,才能使總收益最大,最大總收益為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求圓心在直線且與直線相切于點的圓的方程;

(2)求與圓外切于點且半徑為的圓的方程.

【答案】(1);(2).

【解析】試題分析:

(1)由題意可得圓的一條直徑所在的直線方程為據(jù)此可得圓心,半徑則所求圓的方程為.

(2)圓的標準方程為,得該圓圓心為,半徑為,兩圓連心線斜率.設(shè)所求圓心為結(jié)合弦長公式可得,.則圓的方程為.

試題解析:

(1)過點且與直線垂直的直線為

.

即圓心,半徑

所求圓的方程為.

(2)圓方程化為,得該圓圓心為,半徑為,故兩圓連心線斜率.設(shè)所求圓心為,

,,

,.

.

點睛:求圓的方程,主要有兩種方法:

(1)幾何法:具體過程中要用到初中有關(guān)圓的一些常用性質(zhì)和定理.如:①圓心在過切點且與切線垂直的直線上;②圓心在任意弦的中垂線上;③兩圓相切時,切點與兩圓心三點共線.

(2)待定系數(shù)法:根據(jù)條件設(shè)出圓的方程,再由題目給出的條件,列出等式,求出相關(guān)量.一般地,與圓心和半徑有關(guān),選擇標準式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數(shù),所以應(yīng)該有三個獨立等式.

型】解答
結(jié)束】
20

【題目】如圖所示,平面,在以為直徑的,,為線段的中點,在弧.

(1)求證:平面平面;

(2)求證:平面平面

(3)設(shè)二面角的大小為,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖三棱柱中,側(cè)面為菱形,.

(Ⅰ)證明:

(Ⅱ)若,AB=BC,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為實常數(shù)).

1)若,寫出的單調(diào)遞增區(qū)間(直接寫結(jié)果)

2)若,設(shè)在區(qū)間的最小值為,求的表達式;

3)設(shè),若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.

參考結(jié)論:函數(shù)為常數(shù)),時,上遞增;時,上遞減,上遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)藥研究所開發(fā)的一種新藥,如果成年人按規(guī)定的劑量服用,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y(微克)與時間t(小時)之間近似滿足如圖所示的曲線.

(1)寫出第一次服藥后,y與t之間的函數(shù)關(guān)系式y(tǒng)=f(t);

(2)據(jù)進一步測定:每毫升血液中含藥量不少于0.25微克時,治療有效.求服藥一次后治療有效的時間是多長?

查看答案和解析>>

同步練習(xí)冊答案