【題目】如圖,矩形中,為邊的中點,將沿直線翻轉為.若為線段的中點,則在翻轉過程中,有下列命題:
①是定值;
②點在圓上運動;
③一定存在某個位置,使;
④若平面,則平面.
其中正確的個數為( 。
A. B. C. D.
科目:高中數學 來源: 題型:
【題目】在黨中央的正確指導下,通過全國人民的齊心協力,特別是全體一線醫(yī)護人員的奮力救治,二月份“新冠肺炎”疫情得到了控制.下圖是國家衛(wèi)健委給出的全國疫情通報,甲、乙兩個省份從2月7日到2月13日一周的新增“新冠肺炎”確診人數的折線圖如下:
根據圖中甲、乙兩省的數字特征進行比對,通過比較把你得到最重要的兩個結論寫在答案紙指定的空白處.
①_________________________________________________.
②_________________________________________________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在原點,其中一個焦點與拋物線的焦點重合,點在橢圓上.
(1)求橢圓的方程;
(2)設橢圓的左右焦點分別為,過的直線與橢圓相交于兩點,若的面積為,求以為圓心且與直線相切的圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知扇形的圓心角是α,半徑為R,弧長為l.
(1)若α=75°,R=12 cm,求扇形的弧長l和面積;
(2)若扇形的周長為20 cm,當扇形的圓心角α為多少弧度時,這個扇形的面積最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國詩詞大會的播出引發(fā)了全民讀書熱,某學校語文老師在班里開展了一次詩詞默寫比賽,班里40名學生得分數據的莖葉圖如右圖,若規(guī)定得分不低于85分的學生得到“詩詞達人”的稱號,低于85分且不低于70分的學生得到“詩詞能手”的稱號,其他學生得到“詩詞愛好者”的稱號.根據該次比賽的成績按照稱號的不同進行分層抽樣抽選10名學生,則抽選的學生中獲得“詩詞能手”稱號的人數為( 。
A. 6B. 5C. 4D. 2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2018·長沙二模)在平面幾何中有如下結論:正三角形ABC的內切圓面積為S1,外接圓面積為S2,則.推廣到空間可以得到類似結論:已知正四面體P-ABC的內切球體積為V1,外接球體積為V2,則=________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com