(本小題滿分13分)
已知拋物線、橢圓和雙曲線都經(jīng)過(guò)點(diǎn),它們?cè)?img src="http://thumb.zyjl.cn/pic5/tikupic/33/a/7ufdm3.png" style="vertical-align:middle;" />軸上有共同焦點(diǎn),橢圓和雙曲線的對(duì)稱軸是坐標(biāo)軸,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn).
(1)求這三條曲線的方程;
(2)對(duì)于拋物線上任意一點(diǎn),點(diǎn)
都滿足
,求
的取值范圍.
(1);(2)
。
解析試題分析:(1)設(shè)拋物線方程為,將
代入方程得
-------------------2分
由題意知橢圓、雙曲線的焦點(diǎn)為----------------3分
對(duì)于橢圓,,
所以橢圓方程為----------------5分
對(duì)于雙曲線,,
所以雙曲線方程為----------------7分
(2)設(shè)------------(8分)
由得
---------------(9分)
恒成立------------------(10分)
則----------------(12分)
∴-----------(13分)
考點(diǎn):本題主要考查直線與拋物線、橢圓、雙曲線的定義及標(biāo)準(zhǔn)方程,二次函數(shù)的圖象和性質(zhì)。。
點(diǎn)評(píng):中檔題,曲線關(guān)系問(wèn)題,往往通過(guò)聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題求橢圓、雙曲線標(biāo)準(zhǔn)方程時(shí),主要運(yùn)用了曲線的定義,求拋物線方程則利用了待定系數(shù)法。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖,已知點(diǎn)是橢圓
的右頂點(diǎn),若點(diǎn)
在橢圓上,且滿足
.(其中
為坐標(biāo)原點(diǎn))
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(diǎn)
,當(dāng)
時(shí),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
求下列各曲線的標(biāo)準(zhǔn)方程
(Ⅰ)實(shí)軸長(zhǎng)為12,離心率為,焦點(diǎn)在x軸上的橢圓;
(Ⅱ)拋物線的焦點(diǎn)是雙曲線的左頂點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在中,兩個(gè)定點(diǎn)
,
的垂心H(三角形三條高線的交點(diǎn))是AB邊上高線CD的中點(diǎn)。
(1)求動(dòng)點(diǎn)C的軌跡方程;
(2)斜率為2的直線交動(dòng)點(diǎn)C的軌跡于P、Q兩點(diǎn),求
面積的最大值(O是坐標(biāo)原點(diǎn))。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的兩焦點(diǎn)是F1(0,-1),F(xiàn)2(0,1),離心率e=
(1)求橢圓方程;
(2)若P在橢圓上,且|PF1|-|PF2|=1,求cos∠F1PF2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
已知拋物線C:y2=2px(p>0)的焦點(diǎn)F和橢圓的右焦點(diǎn)重合,直線
過(guò)點(diǎn)F交拋物線于A、B兩點(diǎn).
(1)求拋物線C的方程;
(2)若直線交y軸于點(diǎn)M,且
,m、n是實(shí)數(shù),對(duì)于直線
,m+n是否為定值?若是,求出m+n的值,否則,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,斜率為1且過(guò)橢圓右焦點(diǎn)F的直線交橢圓于A、B兩點(diǎn),與
=(3,-1)共線.
(1)求橢圓的離心率;
(2)設(shè)M為橢圓上任意一點(diǎn),且(
),證明
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,且經(jīng)過(guò)點(diǎn)
(2,1),平行于
直線
在
軸上的截距為
,設(shè)直線
交橢圓于兩個(gè)不同點(diǎn)
、
,
(1)求橢圓方程;
(2)求證:對(duì)任意的的允許值,
的內(nèi)心在定直線
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分16分)
橢圓:
的左、右頂點(diǎn)分別
、
,橢圓過(guò)點(diǎn)
且離心率
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓上異于
、
兩點(diǎn)的任意一點(diǎn)
作
軸,
為垂足,延長(zhǎng)
到點(diǎn)
,且
,過(guò)點(diǎn)
作直線
軸,連結(jié)
并延長(zhǎng)交直線
于點(diǎn)
,線段
的中點(diǎn)記為點(diǎn)
.
①求點(diǎn)所在曲線的方程;
②試判斷直線與以
為直徑的圓
的位置關(guān)系, 并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com