【題目】已知點分別是橢圓的左右頂點, 為其右焦點, 的等比中項是,橢圓的離心率為.

(1)求橢圓的方程;

(2)設不過原點的直線與該軌跡交于兩點,若直線的斜率依次成等比數(shù)列,求的面積的取值范圍.

【答案】(1) ;(2) .

【解析】試題分析:(1)利用 , 的等比中項,得到,結合橢圓得離心率求解即可(2)依題意知直線的斜率存在且不為0,設直線, , ,聯(lián)立直線和橢圓消去可得,利用判別式以及韋達定理,通過, 的斜率依次成等比數(shù)列,推出,求出, ,且,然后求出點到直線的距離,表示出三角形面積,求解范圍即可.

試題解析:(1) , , 的等比中項,

,

,又,解得

∴橢圓的方程為.

(2)由題意可知,直線的斜率存在且不為0,故可設直線, ,

聯(lián)立直線和橢圓,消去得,

由題意可知, ,

,

, ,

又直線, , 的斜率依次成等比數(shù)列,所以

, 代入并整理得,

因為, ,且

為點到直線的距離,則有, ,

,

∴三角形面積的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若關于x的不等式xex﹣2ax+a<0的非空解集中無整數(shù)解,則實數(shù)a的取值范圍是(
A.[
B.[ ,
C.[ ,e]
D.[ ,e]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司共有60位員工,為提高員工的業(yè)務技術水平,公司擬聘請專業(yè)培訓機構進行培訓.培訓的總費用由兩部分組成:一部分是給每位參加員工支付400元的培訓材料費;另一部分是給培訓機構繳納的培訓費.若參加培訓的員工人數(shù)不超過30人,則每人收取培訓費1000元;若參加培訓的員工人數(shù)超過30人,則每超過1人,人均培訓費減少20元.設公司參加培訓的員工人數(shù)為x人,此次培訓的總費用為y元.

(1)求出yx之間的函數(shù)關系式;

(2)請你預算:公司此次培訓的總費用最多需要多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓的半徑為,,是圓上的一個動點,的中垂線于點,以直線軸,的中垂線為軸建立平面直角坐標系。

(Ⅰ)若點的軌跡為曲線,求曲線的方程;

(Ⅱ)設點為圓上任意一點,過作圓的切線與曲線交于兩點,證明:以為直徑的圓經(jīng)過定點,并求出該定點的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x+ +lnx,a∈R. (Ⅰ)若f(x)在x=1處取得極值,求a的值;
(Ⅱ)若f(x)在區(qū)間(1,2)上單調(diào)遞增,求a的取值范圍;
(Ⅲ)討論函數(shù)g(x)=f'(x)﹣x的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,側面為等邊三角形且垂直于底面, , 中點.

(1)證明:直線平面

(2)點在棱上,且直線與底面所成角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l1axby-1=0(a、b不同時為0),l2:(a+2)xya=0.

(1)b=0l1l2求實數(shù)a的值;

(2)b=2,l1l2,求直線l1l2之間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知指數(shù)函數(shù)y=g(x)滿足:g(3)=8,定義域為R的函數(shù)f(x)= 是奇函數(shù).

(1)確定y=g(x),y=f(x)的解析式

(2)若h(x)=f(x)+a在(﹣1,1)上有零點,求a的取值范圍;

(3)若對任意的t∈(﹣4,4),不等式f(6t﹣3)+f(t2﹣k)<0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,過點作圓的切線,切點分別為.直線恰好經(jīng)過的右頂點和上頂點.

1)求橢圓的方程;

2)如圖,過橢圓的右焦點作兩條互相垂直的弦,

①設中點分別為,證明:直線必過定點,并求此定點坐標;

②若直線, 的斜率均存在時,求由四點構成的四邊形面積的取值范圍.

查看答案和解析>>

同步練習冊答案