【題目】已知函數(shù)處取得極小值.

(1)求實數(shù)的值;

(2)設(shè),其導(dǎo)函數(shù)為,若的圖象交軸于兩點(diǎn),設(shè)線段的中點(diǎn)為,試問是否為的根?說明理由.

【答案】(1)(2)不是的根.

【解析】試題分析:(1)先求導(dǎo)數(shù),再根據(jù),解得,最后列表驗證(2)即研究是否成立,因為,利用,

,所以=0,轉(zhuǎn)化為.其中,最后利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,確定方程解的情況

試題解析:(1)因為

所以,

因為函數(shù)處取得極小值,

所以,即,

所以,

所以,

當(dāng)時, ,當(dāng) 時,

所以上單調(diào)遞減,在上單調(diào)遞增.

所以處取得極小值,符合題意.

所以.

(2)由(1)知函數(shù).

∵函數(shù)圖象與軸交于兩個不同的點(diǎn),( ),

,

.

兩式相減得

.

.

下解.

.

,∵,∴

.

,

.

,∴,

上是増函數(shù),則

從而知,

,即不成立.

不是的根.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

設(shè)函數(shù).

(1)的單調(diào)區(qū)間和極值;

(2)若關(guān)于的方程有3個不同實根,求實數(shù)a的取值范圍;

(3)已知當(dāng)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}.
(1)當(dāng)m=3時,求集合A∩B,A∪B;
(2)若BA,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c且cos2B+3cosB﹣1=0.
(1)求角B的大;
(2)若a+c=1,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)請在直角坐標(biāo)系中畫出函數(shù)f(x)的圖象,并寫出該函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=f(x)﹣m恰有3個不同零點(diǎn),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}滿足a4=5,a2+a8=14,數(shù)列{bn}滿足b1=1,bn+1=2 bn
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列{ }的前n項和;
(3)若cn=an ,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)其中實數(shù)為常數(shù)且.

I)求函數(shù)的單調(diào)區(qū)間;

II)若函數(shù)既有極大值,又有極小值,求實數(shù)的取值范圍及所有極值之和;

III)在(II)的條件下,記分別為函數(shù)的極大值點(diǎn)和極小值點(diǎn),

求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓C: 的長軸是短軸的兩倍,點(diǎn)在橢圓上.不過原點(diǎn)的直線l與橢圓相交于A、B兩點(diǎn),設(shè)直線OA、l、OB的斜率分別為、,且、恰好構(gòu)成等比數(shù)列,記△的面積為S.

(1)求橢圓C的方程.

2)試判斷是否為定值?若是,求出這個值;若不是,請說明理由?

(3)求S的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某環(huán)保節(jié)能設(shè)備生產(chǎn)企業(yè)的產(chǎn)品供不應(yīng)求,已知某種設(shè)備的月產(chǎn)量x(套)與每套的售價y1(萬元)之間滿足關(guān)系式y(tǒng)1=150﹣ x,每套的售價不低于90萬元;月產(chǎn)量x(套)與生產(chǎn)總成本y2(萬元)之間滿足關(guān)系式y(tǒng)2=600+72x,則月生產(chǎn)多少套時,每套設(shè)備的平均利潤最大?最大平均利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案