【題目】已知函數(shù),.

1)討論函數(shù)的單調(diào)性;

2)設(shè),當(dāng)時,判斷是否存在使得,并證明你的結(jié)論.

【答案】1)見解析(2)不存在;見解析

【解析】

1)先對函數(shù)求導(dǎo),得到,分別討論兩種情況,分別求解對應(yīng)的不等式,即可得出結(jié)果;

2)先由(1)得,,推出,由時,,得到,分別討論,兩種情況,通過導(dǎo)數(shù)的方法研究函數(shù)的最值等,即可得出結(jié)果.

1的定義域?yàn)?/span>,

,得.

①若,則當(dāng)時,,

此時的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;

②若,令,解得.

當(dāng)時,;當(dāng)時,.

此時,的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為.

2)當(dāng)時,不存在,使得,證明如下:

由(1)知,當(dāng)時,單調(diào)遞增,在單調(diào)遞減,

所以,故,即.

因?yàn)?/span>,所以當(dāng)時,,故.

①當(dāng)時,再由

,則.

,得.

當(dāng)時,;當(dāng),.

所以,故,

所以當(dāng)時,對,都有.

②當(dāng)時,對于,,故.

綜合①,②,當(dāng)時,對于任意的,都有.

所以,當(dāng)時,不存在,使得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象上有且僅有兩個不同的點(diǎn)關(guān)于直線的對稱點(diǎn)在的圖象上,則實(shí)數(shù)的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“雜交水稻之父”袁隆平一生致力于雜交水稻技術(shù)的研究、應(yīng)用與推廣,發(fā)明了“三系法”秈型雜交水稻,成功研究出“兩系法”雜交水稻,創(chuàng)建了超級雜交稻技術(shù)體系,為我國糧食安全、農(nóng)業(yè)科學(xué)發(fā)展和世界糧食供給做出了杰出貢獻(xiàn);某雜交水稻種植研究所調(diào)查某地水稻的株高,得出株高(單位:cm)服從正態(tài)分布,其密度曲線函數(shù)為,則下列說法正確的是(

A.該地水稻的平均株高為100cm

B.該地水稻株高的方差為10

C.隨機(jī)測量一株水稻,其株高在120cm以上的概率比株高在70cm以下的概率大

D.隨機(jī)測量一株水稻,其株高在(80,90)和在(100110)(單位:cm)的概率一樣大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形與等邊所在平面互相垂直,,,分別是線段的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,為自然對數(shù)的底數(shù).

(Ⅰ)若為單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;

(Ⅱ)當(dāng)存在極小值時,設(shè)極小值點(diǎn)為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其定義域?yàn)?/span>.(其中常數(shù),是自然對數(shù)的底數(shù))

1)求函數(shù)的遞增區(qū)間;

2)若函數(shù)為定義域上的增函數(shù),且,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】湖北七市州高三523日聯(lián)考后,從全體考生中隨機(jī)抽取44名,獲取他們本次考試的數(shù)學(xué)成績和物理成績,繪制成如圖散點(diǎn)圖:

根據(jù)散點(diǎn)圖可以看出之間有線性相關(guān)關(guān)系,但圖中有兩個異常點(diǎn).經(jīng)調(diào)查得知,考生由于重感冒導(dǎo)致物理考試發(fā)揮失常,考生因故未能參加物理考試.為了使分析結(jié)果更科學(xué)準(zhǔn)確,剔除這兩組數(shù)據(jù)后,對剩下的數(shù)據(jù)作處理,得到一些統(tǒng)計的值:其中,分別表示這42名同學(xué)的數(shù)學(xué)成績、物理成績,2,42,的相關(guān)系數(shù)

1)若不剔除兩名考生的數(shù)據(jù),用44組數(shù)據(jù)作回歸分析,設(shè)此時的相關(guān)系數(shù)為.試判斷的大小關(guān)系,并說明理由;

2)求關(guān)于的線性回歸方程,并估計如果考生參加了這次物理考試(已知考生的數(shù)學(xué)成績?yōu)?/span>125分),物理成績是多少?

3)從概率統(tǒng)計規(guī)律看,本次考試七市州的物理成績服從正態(tài)分布,以剔除后的物理成績作為樣本,用樣本平均數(shù)作為的估計值,用樣本方差作為的估計值.試求七市州共50000名考生中,物理成績位于區(qū)間(62.885.2)的人數(shù)的數(shù)學(xué)期望.

附:①回歸方程中:

②若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為2,直線與拋物線交于不同的兩點(diǎn),.

1)求拋物線的方程;

2)是否存在與的取值無關(guān)的定點(diǎn),使得直線,的斜率之和恒為定值?若存在,求出所有點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四錐中,,底面ABCD為形,,點(diǎn)E為的AD中點(diǎn).

1)證明:平面平面PBE;

2)若,二面角的余弦值為,且,求PE的長.

查看答案和解析>>

同步練習(xí)冊答案