【題目】設(shè)數(shù)列是首項(xiàng)為0的遞增數(shù)列,,滿足:對(duì)于任意的總有兩個(gè)不同的根,則的通項(xiàng)公式為_(kāi)________
【答案】
【解析】
試題分析:∵,當(dāng)n=1時(shí),f1(x)=|sin(x-a1)|=|sinx|,x∈[0,a2],
又∵對(duì)任意的b∈[0,1),f1(x)=b總有兩個(gè)不同的根,∴a2=π
∴f1(x)=sinx,x∈[0,π],a2=π
又f2(x)=|sin (x-a2)|=|sin (x-π)|=|cos |,x∈[π,a3]
∵對(duì)任意的b∈[0,1),f1(x)=b總有兩個(gè)不同的根,∴…(5分)
又f3(x)=|sin (x-a3)|=|sin (x-3π)|=|sin π|,x∈[3π,a4]
∵對(duì)任意的b∈[0,1),f1(x)=b總有兩個(gè)不同的根,∴a4=6π…(6分)
由此可得,
∴
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某飛機(jī)失聯(lián),經(jīng)衛(wèi)星偵查,其最后出現(xiàn)在小島附近,現(xiàn)派出四艘搜救船,為方便聯(lián)絡(luò),船始終在以小島為圓心,100海里為半徑的圓上,船構(gòu)成正方形編隊(duì)展開(kāi)搜索,小島在正方形編隊(duì)外(如圖).設(shè)小島到的距離為,,船到小島的距離為.
(1)請(qǐng)分別求關(guān)于的函數(shù)關(guān)系式,并分別寫出定義域;
(2)當(dāng)兩艘船之間的距離是多少時(shí)搜救范圍最大(即最大)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為增強(qiáng)市民的節(jié)能環(huán)保意識(shí),鄭州市面向全市征召義務(wù)宣傳志愿者,從符合條件的500名志愿者中隨機(jī)抽取100名,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)是:.
(Ⅰ)求圖中的值,并根據(jù)頻率分布直方圖估計(jì)這500名志愿者中年齡在歲的人數(shù);
(Ⅱ)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取10名參加中心廣場(chǎng)的宣傳活動(dòng),再?gòu)倪@10名志愿者中選取3名擔(dān)任主要負(fù)責(zé)人.記這3名志愿者中“年齡低于35歲”的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)一批產(chǎn)品需要原材料500噸,每噸原材料可創(chuàng)造利潤(rùn)12萬(wàn)元,該公司通過(guò)設(shè)備升級(jí),生產(chǎn)這批產(chǎn)品所需原材料減少了噸,且每噸原材料創(chuàng)造的利潤(rùn)提高;若將少用的噸原材料全部用于生產(chǎn)公司新開(kāi)發(fā)的產(chǎn)品,每噸原材料創(chuàng)造的利潤(rùn)為萬(wàn)元.
(1)若設(shè)備升級(jí)后生產(chǎn)這批產(chǎn)品的利潤(rùn)不低于原來(lái)生產(chǎn)該批產(chǎn)品的利潤(rùn),求的取值范圍;
(2)若生產(chǎn)這批產(chǎn)品的利潤(rùn)始終不高于設(shè)備升級(jí)后生產(chǎn)這批產(chǎn)品的利潤(rùn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐,底面是、邊長(zhǎng)為的菱形,又底,且,點(diǎn)分別是棱的中點(diǎn).
(1)證明:平面;
(2)證明:平面平面;
(3)求點(diǎn)到平面的距離.[
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(I)求直方圖中的值;
(II)求月平均用電量的眾數(shù)和中位數(shù);
(III)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在邊長(zhǎng)為1的等邊三角形ABC中,D,E分別是AB,AC邊上的點(diǎn),AD=AE,F(xiàn)是BC的中點(diǎn),AF與DE交于點(diǎn)G,將△ABF沿AF折起,得到如圖2所示的三棱錐A﹣BCF,其中BC=.
(Ⅰ)證明:DE∥平面BCF;
(Ⅱ)證明:CF⊥平面ABF;
(Ⅲ)當(dāng)AD=時(shí),求三棱錐F﹣DEG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在坐標(biāo)原點(diǎn)的橢圓經(jīng)過(guò)點(diǎn),且點(diǎn)為其右焦點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在平行于的直線,使得直線與橢圓有公共點(diǎn),且直線與的距離等于4?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com