【題目】如圖,在五棱錐中,平面,,,, ,,是等腰三角形.

(1)求證:平面平面;

2求側(cè)棱上是否存在點(diǎn),使得與平面所成角大小為,若存在,求出點(diǎn)位置,若不存在,說明理由.

【答案】(1)詳見解析2點(diǎn)為頂點(diǎn)時(shí)滿足題意

【解析】

試題分析:(1)由邊長可求得,結(jié)合可得到,從而可證明平面平面;(2設(shè)出動(dòng)點(diǎn)Q坐標(biāo),結(jié)合求解值,從而確定點(diǎn)的位置

試題解析:)證明:因?yàn)?/span>ABC=45°,AB=2,BC=4,所以在中,由余弦定理得:,解得,

所以,即,又PA平面ABCDE,所以PA,

又PA,所以,又ABCD,所以,又因?yàn)?/span>

,所以平面PCD平面PAC

(2) 由(Ⅰ)知AB,AC,AP兩兩互相垂直,分別以AB,AC,AP為x,y,z軸建立如圖所示的空間直角坐標(biāo)系,由PAB為等腰直角三角形,所以,

,則

因?yàn)锳CED,CDAC,所以四邊形ACDE是直角梯形.

因?yàn)锳E=2,ABC=45°,AEBC,所以BAE=135°,CAE=45°,

,所以

因此,設(shè)是平面PCD的一個(gè)法向量,則,解得x=0,y=z.取y=1,得,

假設(shè)

解出,存在,點(diǎn)為頂點(diǎn)時(shí)滿足題意

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若是在定義域內(nèi)的增函數(shù),求的取值范圍;

(2)若函數(shù)(其中的導(dǎo)函數(shù))存在三個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1設(shè)

若函數(shù)處的切線過點(diǎn),求的值;

當(dāng)時(shí),若函數(shù)上沒有零點(diǎn),求的取值范圍

2設(shè)函數(shù),且,求證: 當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)分別為橢圓)的左、右兩個(gè)焦點(diǎn).

(1)若橢圓上的點(diǎn),兩點(diǎn)的距離之和等于,求橢圓的方程和焦點(diǎn)坐標(biāo);

(2)設(shè)點(diǎn)是(1)中所得橢圓上的動(dòng)點(diǎn),,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,的中點(diǎn),是等腰三角形,的中點(diǎn),上一點(diǎn)

I平面,求;

II平面將三棱柱分成兩個(gè)部分,求較小部分與較大部分的體積之比

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過點(diǎn),圓的圓心在圓的內(nèi)部,且直線被圓所截得的弦長為.點(diǎn)為圓上異于的任意一點(diǎn),直線軸交于點(diǎn),直線軸交于點(diǎn).

(1)求圓的方程

(2)求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)求的單調(diào)區(qū)間;

2)若為整數(shù), 且當(dāng)時(shí),, 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),若在區(qū)間上的最小值為,求的取值范圍;

(2)若對任意,且恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,面為矩形,的中點(diǎn),交于點(diǎn).

證明:

,求BC與平面ACD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案