【題目】執(zhí)行如圖的程序框圖,輸出S的值為(
A.ln4
B.ln5
C.ln 5﹣ln4
D.ln 4﹣ln 3

【答案】A
【解析】解:模擬執(zhí)行程序框圖,可得

i=1,S=0

滿足條件i<4,S=∫ xdx=lnx| =ln2﹣ln1,i=2

滿足條件i<4,S=ln2﹣ln1+ln3﹣ln2=ln3﹣ln1,i=3

滿足條件i<4,S=ln3﹣ln1+ln4﹣ln3=ln4﹣ln1=ln4,i=4

不滿足條件i<4,退出循環(huán),輸出S的值為:ln4.

故選:A.

【考點精析】通過靈活運用程序框圖,掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面內(nèi),定點A,B,C,O滿足 |=2, = ,動點P,M滿足 的最大值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=AC=2,BCcos(π﹣A)=1,則cosA的值所在區(qū)間為(
A.(﹣0.4,﹣0.3)
B.(﹣0.2,﹣0.1)
C.(﹣0.3,﹣0.2)
D.(0.4,0.5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓C: =1(a>b>0)的右頂點為A(2,0),左、右焦點分別為F1、F2 , 過點A且斜率為 的直線與y軸交于點P,與橢圓交于另一個點B,且點B在x軸上的射影恰好為點F1
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過點P且斜率大于 的直線與橢圓交于M,N兩點(|PM|>|PN|),若SPAM:SPBN=λ,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a1= ,an+1=10an+1.
(1)證明數(shù)列{an+ }是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}滿足bn=lg(an+ ),Tn為數(shù)列{ }的前n項和,求證:Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線 的兩個焦點為 的曲線C上.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)記O為坐標原點,過點Q(0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為 ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,a3=9,且an=an1+λn﹣1(n≥2).
( I)求λ的值及數(shù)列{an}的通項公式;
( II)設 ,且數(shù)列{bn}的前n項和為Sn , 求S2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-5:不等式選講]
設函數(shù)f(x)=|x+ |+|x﹣2m|(m>0).
(1)求證:f(x)≥8恒成立;
(2)求使得不等式f(1)>10成立的實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,PD⊥平面ABCD,E為PB上的點,且2BE=EP.
(1)證明:AC⊥DE;
(2)若PC= BC,求二面角E﹣AC﹣P的余弦值.

查看答案和解析>>

同步練習冊答案