【題目】如圖,橢圓C: =1(a>b>0)的右頂點(diǎn)為A(2,0),左、右焦點(diǎn)分別為F1、F2 , 過點(diǎn)A且斜率為 的直線與y軸交于點(diǎn)P,與橢圓交于另一個(gè)點(diǎn)B,且點(diǎn)B在x軸上的射影恰好為點(diǎn)F1 .
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)P且斜率大于 的直線與橢圓交于M,N兩點(diǎn)(|PM|>|PN|),若S△PAM:S△PBN=λ,求實(shí)數(shù)λ的取值范圍.
【答案】(Ⅰ)解:因?yàn)锽F1⊥x軸,得到點(diǎn) ,
所以 ,所以橢圓C的方程是 .
(Ⅱ)因?yàn)? ,
所以 .由(Ⅰ)可知P(0,﹣1),設(shè)MN方程:y=kx﹣1,M(x1,y1),N(x2,y2),
聯(lián)立方程 得:(4k2+3)x2﹣8kx﹣8=0.即得 (*)
又 ,有 ,
將 代入(*)可得: .
因?yàn)? ,有 ,
則 且λ>2 .
綜上所述,實(shí)數(shù)λ的取值范圍為 .
【解析】(Ⅰ)利用已知條件列出方程組,求解橢圓的幾何量,然后求解橢圓C的方程.
(Ⅱ)利用三角形的面積的比值,推出線段的比值,得到 .設(shè)MN方程:y=kx﹣1,M(x1,y1),N(x2,y2),聯(lián)立方程 ,利用韋達(dá)定理,求出 ,解出 ,將 橢圓方程,然后求解實(shí)數(shù)λ的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A是雙曲線 ﹣ =1(a>0,b>0)的左頂點(diǎn),F(xiàn)1 , F2分別為左、右焦點(diǎn),P為雙曲線上一點(diǎn),G是△F1PF2的重心,若 =λ ,| |= ,| |+| |=8,則雙曲線的標(biāo)準(zhǔn)方程為( )
A.x2﹣ =1
B. ﹣y2=1
C. =1
D.x2﹣ =1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四面體A﹣BCD中,AB=CD=10,AC=BD=2 ,AD=BC=2 ,則四面體A﹣BCD外接球的表面積為( )
A.50π
B.100π
C.200π
D.300π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐E﹣ABCD中,底面ABCD為正方形,AE⊥平面CDE,已知AE=DE=2,F(xiàn)為線段DF的中點(diǎn). (I)求證:BE∥平面ACF;
(II)求平面BCF與平面BEF所成銳二面角的余弦角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】體積為 的正三棱錐A﹣BCD的每個(gè)頂點(diǎn)都在半徑為R的球O的球面上,球心O在此三棱錐內(nèi)部,且R:BC=2:3,點(diǎn)E為線段BD上一點(diǎn),且DE=2EB,過點(diǎn)E作球O的截面,則所得截面圓面積的取值范圍是( )
A.[4π,12π]
B.[8π,16π]
C.[8π,12π]
D.[12π,16π]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了得到函數(shù)y= sin(2x﹣ )的圖象,只需將函數(shù)y=sinxcosx的圖象( )
A.向左平移 個(gè)單位
B.向右平移 個(gè)單位
C.向左平移 個(gè)單位
D.向右平移 個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線l過定點(diǎn)P(1,1),且傾斜角為 ,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的坐標(biāo)系中,曲線C的極坐標(biāo)方程為 .
(1)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于不同的兩點(diǎn)A,B,求|AB|及|PA||PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】渝州集團(tuán)對所有員工進(jìn)行了職業(yè)技能測試從甲、乙兩部門中各任選10名員工的測試成績(單位:分)數(shù)據(jù)的莖葉圖如圖所示.
(1)若公司決定測試成績高于85分的員工獲得“職業(yè)技能好能手”稱號(hào),求從這20名員工中任選三人,其中恰有兩人獲得“職業(yè)技能好能手”的概率;
(2)公司結(jié)合這次測試成績對員工的績效獎(jiǎng)金進(jìn)行調(diào)整(績效獎(jiǎng)金方案如表),若以甲部門這10人的樣本數(shù)據(jù)來估計(jì)該部門總體數(shù)據(jù),且以頻率估計(jì)概率,從甲部門所有員工中任選3名員工,記績效獎(jiǎng)金不小于3a的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.
分?jǐn)?shù) | [60,70) | [70,80) | [80,90) | [90,100] |
獎(jiǎng)金 | a | 2a | 3a | 4a |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com