【題目】渝州集團對所有員工進行了職業(yè)技能測試從甲、乙兩部門中各任選10名員工的測試成績(單位:分)數(shù)據(jù)的莖葉圖如圖所示.
(1)若公司決定測試成績高于85分的員工獲得“職業(yè)技能好能手”稱號,求從這20名員工中任選三人,其中恰有兩人獲得“職業(yè)技能好能手”的概率;
(2)公司結合這次測試成績對員工的績效獎金進行調整(績效獎金方案如表),若以甲部門這10人的樣本數(shù)據(jù)來估計該部門總體數(shù)據(jù),且以頻率估計概率,從甲部門所有員工中任選3名員工,記績效獎金不小于3a的人數(shù)為ξ,求ξ的分布列及數(shù)學期望.

分數(shù)

[60,70)

[70,80)

[80,90)

[90,100]

獎金

a

2a

3a

4a

【答案】
(1)解:0名員工中85(分)以上有5人,
(2)解:甲部門中任選一人績效工資不低于3a的概率為 ,

所以ξ的可能取值為ξ=0,1,2,3;

; ; ; ,

ξ的分布列為:

ξ

0

1

2

3

P

ξ的期望為


【解析】(1)利用古典概型的概率公式求解即可.(2)求出ξ的可能取值為ξ=0,1,2,3;求出概率,得到分布列,然后求解期望即可.
【考點精析】關于本題考查的莖葉圖和離散型隨機變量及其分布列,需要了解莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進行比較,將數(shù)的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數(shù),每個數(shù)具體是多少;在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓C: =1(a>b>0)的右頂點為A(2,0),左、右焦點分別為F1、F2 , 過點A且斜率為 的直線與y軸交于點P,與橢圓交于另一個點B,且點B在x軸上的射影恰好為點F1
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過點P且斜率大于 的直線與橢圓交于M,N兩點(|PM|>|PN|),若SPAM:SPBN=λ,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-5:不等式選講]
設函數(shù)f(x)=|x+ |+|x﹣2m|(m>0).
(1)求證:f(x)≥8恒成立;
(2)求使得不等式f(1)>10成立的實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過正方體ABCD﹣A1B1C1D1的頂點A1在空間作直線l,使l與直線AC和BC1所成的角都等于 ,則這樣的直線l共可以作出(
A.1條
B.2條
C.3條
D.4條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】知 =(2λsinx,sinx+cosx), =( cosx,λ(sinx﹣cosx))(λ>0),函數(shù)f(x)= 的最大值為2.
(1)求函數(shù)f(x)的單調遞減區(qū)間;
(2)在△ABC中,內角A,B,C的對邊分別為a,b,c,cosA= ,若f(A)﹣m>0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=|x+1|+x﹣m的最小值是﹣3.
(1)求m的值;
(2)若 ,是否存在正實數(shù)a,b滿足 ?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,PD⊥平面ABCD,E為PB上的點,且2BE=EP.
(1)證明:AC⊥DE;
(2)若PC= BC,求二面角E﹣AC﹣P的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a10=17,其前n項和Sn滿足Sn=n2+cn+2.
(1)求實數(shù)c的值;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,旅客從某旅游區(qū)的景點A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50米/分鐘,在甲出發(fā)2分鐘后,乙從A乘纜車到B,再從B勻速步行到C.假設纜車勻速直線運動的速度為130米/分鐘,山路AC長1260米,經(jīng)測量,cosA= ,cosC=
(1)求索道AB的長;
(2)問乙出發(fā)后多少分鐘后,乙在纜車上與甲的距離最短?

查看答案和解析>>

同步練習冊答案