【題目】已知點(diǎn)Px0y0)(x0)在橢圓Cab0)上,若點(diǎn)M為橢圓C的右頂點(diǎn),且POPM O為坐標(biāo)原點(diǎn)),則橢圓C的離心率e的取值范圍是

A. 0, B. (0,1 C. ,1 D. 0,

【答案】C

【解析】

因?yàn)?/span>,所以點(diǎn)P在以OM為直徑的圓上,所以由參數(shù)寫出圓的方程,與橢圓方程聯(lián)立,得到二次方程,使得方程在區(qū)間上有解,即可得到關(guān)于參數(shù)的不等關(guān)系,由離心率公式便可求得離心率取值范圍.

由題意,所以點(diǎn)P在以OM為直徑的圓上,圓心為,半徑為

所以圓的方程為:,

與橢圓方程聯(lián)立得,此方程在區(qū)間上有解,

由于a為此方程的一個根,且另一根在此區(qū)間內(nèi),所以對稱軸要介于a之間,

所以,結(jié)合,解得:

根據(jù)離心率公式可得.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

如圖,長方體ABCDA1B1C1D1的底面ABCD是正方形,點(diǎn)E在棱AA1上,BEEC1.

1)證明:BE⊥平面EB1C1;

2)若AE=A1E,求二面角BECC1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個半徑為2千米,圓心角為的扇形游覽區(qū)的平面示意圖是半徑上一點(diǎn),是圓弧上一點(diǎn),且.現(xiàn)在線段,線段及圓弧三段所示位置設(shè)立廣告位,經(jīng)測算廣告位出租收入是:線段處每千米為元,線段及圓弧處每千米均為元.設(shè)弧度,廣告位出租的總收入為元.

(1)求關(guān)于的函數(shù)解析式,并指出該函數(shù)的定義域;

(2)試問:為何值時,廣告位出租的總收入最大?并求出其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾種推理是類比推理的( )

A. 兩條直線平行,同旁內(nèi)角互補(bǔ),如果是兩條平行直線的同旁內(nèi)角,則

B. 由平面三角形的性質(zhì),推測空間四邊形的性質(zhì)

C. 某校高二級有20個班,1班有51位團(tuán)員,2班有53位團(tuán)員,3班有52位團(tuán)員,由此可以推測各班都超過50位團(tuán)員.

D. 一切偶數(shù)都能被2整除,是偶數(shù),所以能被2整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不一定正確的是(

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的20%

C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80后多

D.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過橢圓的右頂點(diǎn)、下頂點(diǎn)和上頂點(diǎn)

(1)求圓的標(biāo)準(zhǔn)方程;

(2)直線經(jīng)過點(diǎn)且與垂直,是直線上的動點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)分別為,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了實(shí)現(xiàn)1000萬元利潤的目標(biāo),準(zhǔn)備制定一個激勵銷售人員的獎勵方案:在銷售利潤達(dá)到10萬元時,按銷售利潤進(jìn)行獎勵,且獎勵金額y(單位:萬元)隨銷售利潤x(單位:萬元)的增加而增加,但獎金總數(shù)不超過5萬元,同時獎金不超過利潤的25%.現(xiàn)有三個獎勵模型:,,其中哪個模型能符合公司的要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】研究鮭魚的科學(xué)家發(fā)現(xiàn)鮭魚的游速可以表示為函數(shù),單位是,其中x表示鮭魚的耗氧量的單位數(shù).

1)當(dāng)一條鮭魚的耗氧量是8100個單位時,它的游速是多少?

2)計(jì)算一條鮭魚靜止時耗氧量的單位數(shù).

3)若鮭魚A的游速大于鮭魚B的游速,問這兩條鮭魚誰的耗氧量較大?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圖1,平行四邊形中, , ,現(xiàn)將沿折起,得到三棱錐(如圖2),且,點(diǎn)為側(cè)棱的中點(diǎn).

(1)求證: 平面;

(2)求三棱錐的體積;

(3)在的角平分線上是否存在點(diǎn),使得平面?若存在,求的長;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案