【題目】已知分別是離心率為的橢圓的左、右焦點,點是橢圓上異于其左、右頂點的任意一點,過右焦點的外角平分線的垂線,交于點,且為坐標(biāo)原點).

(1)求橢圓的方程;

(2)若點在圓上,且在第一象限,過作圓的切線交橢圓于、兩點,問:的周長是否為定值?如果是,求出該定值;如果不是,說明理由.

【答案】(1);(2)6.

【解析】試題分析:(1)由已知條件求出,再由離心率,求出b的值,寫出橢圓方程;(2)設(shè)的方程為,,由直線AB與圓相切,求得

,設(shè) ,),聯(lián)立直線與橢圓方程,消去y得到一個關(guān)于x的一元二次方程,求出的值,再算出弦長的表達(dá)式,由兩點間的距離公式算出 的表達(dá)式,算出的周長為定值。

試題解析:(1)延長交直線于點

的外角平分線的垂線,∴,的中點,

,

由橢圓的離心率,得,

∴橢圓的方程為

(2)由題意,設(shè)的方程為,),

∵直線與圓相切,∴,即,

設(shè) ,),則,

,

,

,

同理

,

,即的周長為定值6. 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年開始,國家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中語文、數(shù)學(xué)、外語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門科目中自選3門參加考試(6選3),每科目滿分100分.為了應(yīng)對新高考,某高中從高一年級1000名學(xué)生(其中男生550人,女生 450 人)中,采用分層抽樣的方法從中抽取名學(xué)生進(jìn)行調(diào)查.

(1)已知抽取的名學(xué)生中含女生45人,求的值及抽取到的男生人數(shù);

(2)學(xué)校計劃在高一上學(xué)期開設(shè)選修中的“物理”和“地理”兩個科目,為了了解學(xué)生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在這兩個科目中必須選擇一個科目且只能選擇一個科目),下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表. 請將列聯(lián)表補(bǔ)充完整,并判斷是否有 99%的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;

(3)在抽取的選擇“地理”的學(xué)生中按分層抽樣再抽取6名,再從這6名學(xué)生中抽取2人了解學(xué)生對“地理”的選課意向情況,求2人中至少有1名男生的概率.

0.05

0.01

3.841

6.635

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x2-(a-1)x-a<0,a∈R},集合B={x|<0}.

(1)當(dāng)a=3時,求A∩B;

(2)若A∪B=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右頂點為A,上頂點為B.已知橢圓的離心率為,

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于,兩點,與直線交于點M,且點P,M均在第四象限.若的面積是面積的2倍,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=a﹣(a∈R)

(Ⅰ)判斷函數(shù)f(x)在R上的單調(diào)性,并用單調(diào)函數(shù)的定義證明;

(Ⅱ)是否存在實數(shù)a使函數(shù)f(x)為奇函數(shù)?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,其離心率,點P為橢圓上的一個動點,面積的最大值為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若A,B,C,D是橢圓上不重合的四個點,ACBD相交于點,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)寫出曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(2)已知點是曲線上一點,點是曲線上一點,的最小值為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的反函數(shù),定義:若對于給定實數(shù),函數(shù))互成反函數(shù),則稱滿足和性質(zhì),若函數(shù)互為反函數(shù),則稱滿足積性質(zhì)

1)判斷函數(shù)是否滿足“1和性質(zhì),并說明理由;

2)求所有滿足“2和性質(zhì)的一次函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)分別是橢圓C的左、右焦點,過且斜率不為零的動直線l與橢圓C交于A,B兩點.

的周長;

若存在直線l,使得直線,AB,與直線分別交于P,Q,R三個不同的點,且滿足P,Q,Rx軸的距離依次成等比數(shù)列,求該直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案