【題目】將函數(shù)的圖象向右平移個單位長度,所得圖像對應(yīng)的函數(shù)( )
A. 在區(qū)間上單調(diào)遞減 B. 在區(qū)間上單調(diào)遞增
C. 在區(qū)間上單調(diào)遞減 D. 在區(qū)間上單調(diào)遞增
【答案】B
【解析】將函數(shù)y=3sin(2x+)的圖象向右平移個單位長度,
所得函數(shù)的解析式:y=3sin[2(x﹣)+]=3sin(2x﹣).
令2kπ﹣<2x﹣<2kπ+,k∈Z,
可得:kπ+<x<kπ+,k∈Z,
可得:當(dāng)k=0時,對應(yīng)的函數(shù)y=3sin(2x﹣)的單調(diào)遞增區(qū)間為:(, ).
故選:B.
點睛: 三角函數(shù)的圖象變換,提倡“先平移,后伸縮”,但“先伸縮,后平移”也常出現(xiàn)在題目中,所以也必須熟練掌握.無論是哪種變形,切記每一個變換總是對字母而言. 由求增區(qū)間;由求減區(qū)間.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b∈R,函數(shù) ,g(x)=ex(e為自然對數(shù)的底數(shù)),且函數(shù)f(x)的圖象與函數(shù)g(x)的圖象在x=0處有公共的切線.
(Ⅰ)求b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若g(x)>f(x)在區(qū)間(﹣∞,0)內(nèi)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD=5,PD=8,點E,F(xiàn)分別是PB,DC的中點.
(1)求證:EF∥平面PAD;
(2)求EF與平面PDB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+3x2+1,若至少存在兩個實數(shù)m,使得f(﹣m),f(1)、f(m+2)成等差數(shù)列,則過坐標(biāo)原點作曲線y=f(x)的切線可以作( )
A.3條
B.2條
C.1條
D.0條
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱錐P﹣ABCD中,AB=2,PA= ,E是棱PC的中點,過AE作平面分別與棱PB、PD交于M、N兩點.
(1)若PM= PB,PN=λPD,求λ的值;
(2)求直線PA與平面AMEN所成角的正弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+ ,a∈R.
(1)若f(x)的最小值為0,求實數(shù)a的值;
(2)證明:當(dāng)a=2時,不等式f(x)≥ ﹣e1﹣x恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)經(jīng)典名著,它在集合學(xué)中的研究比西方早1千年,在《九章算術(shù)》中,將四個面均為直角三角形的四面體稱為鱉臑,已知某“鱉臑”的三視圖如圖所示,則該鱉臑的外接球的表面積為( )
A.200π
B.50π
C.100π
D. π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若
(1)求的值,并寫出函數(shù)的最小正周期(不需證明);
(2)是否存在正整數(shù),使得函數(shù)在區(qū)間內(nèi)恰有個零點?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com