【題目】某海域有兩個島嶼,島在島正東4海里處,經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)出過魚群。以所在直線為軸,的垂直平分線為軸建立平面直角坐標系.
(1)求曲線的標準方程;
(2)某日,研究人員在兩島同時用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),兩島收到魚群在處反射信號的時間比為,問你能否確定處的位置(即點的坐標)?
科目:高中數(shù)學 來源: 題型:
【題目】水培植物需要一種植物專用營養(yǎng)液.已知每投放(且)個單位的營養(yǎng)液,它在水中釋放的濃度(克/升)隨著時間(天)變化的函數(shù)關系式近似為,其中,若多次投放,則某一時刻水中的營養(yǎng)液濃度為每次投放的營養(yǎng)液在相應時刻所釋放的濃度之和,根據(jù)經(jīng)驗,當水中營養(yǎng)液的濃度不低于4(克/升)時,它才能有效.
(1)若只投放一次4個單位的營養(yǎng)液,則有效時間可能達幾天?
(2)若先投放2個單位的營養(yǎng)液,3天后投放個單位的營養(yǎng)液.要使接下來的2天中,營養(yǎng)液能夠持續(xù)有效,試求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了月日至月日的每天晝夜溫差與實驗室每天每顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫度x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
設農(nóng)科所確定的研究方案是:先從這組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再對被選取的組數(shù)據(jù)進行檢驗.
(1)求選取的組數(shù)據(jù)恰好是不相鄰天數(shù)據(jù)的概率;
(2)若選取的是月日與月日的兩組數(shù)據(jù),請根據(jù)月日與月日的數(shù)據(jù),求關于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面,底面是直角梯形,,是上的點.
(1)求證: 平面平面;
(2)若是的中點,且二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設不等式組所表示的平面區(qū)域為,記內(nèi)的整點個數(shù)為,(整點即橫、縱坐標均為整數(shù)的點)
(1)計算的值;
(2)求數(shù)列的通項公式;
(3)記數(shù)列的前項和為,且,若對于一切的正整數(shù),總有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的焦點在軸上.
(1)若橢圓的焦距為1,求橢圓的方程;
(2)設分別是橢圓的左、右焦點,為橢圓上第一象限內(nèi)的點,直線交軸于點,并且.證明:當變化時,點在定直線上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com