【題目】已知曲線的方程為,集合,若對于任意的,都存在,使得成立,則稱曲線為曲線.下列方程所表示的曲線中,是曲線的有__________(寫出所有曲線的序號)
①;②;③;④
【答案】①③
【解析】
將問題轉(zhuǎn)化為:對于曲線上任意一點,在曲線上存在著點使得,據(jù)此逐項判斷曲線是否為曲線.
①的圖象既關(guān)于軸對稱,也關(guān)于軸對稱,且圖象是封閉圖形,
所以對于任意的點,存在著點使得,所以①滿足;
②的圖象是雙曲線,且雙曲線的漸近線斜率為,所以漸近線將平面分為四個夾角為的區(qū)域,
當(dāng)在雙曲線同一支上,此時,當(dāng)不在雙曲線同一支上,此時,
所以,不滿足,故②不滿足;
③的圖象是焦點在軸上的拋物線,且關(guān)于軸對稱,連接,再過點作的垂線,
則垂線一定與拋物線交于點,所以,所以,所以③滿足;
④取,若,則有,顯然不成立,所以此時不成立,所以④不滿足.
故答案為:①③.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2018·湖南師大附中摸底)已知直線l經(jīng)過點P(-4,-3),且被圓(x+1)2+(y+2)2=25截得的弦長為8,則直線l的方程是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:,直線l不過原點O且不平行于坐標軸,l與E有兩個交點A,B,線段AB的中點為M.
若,點K在橢圓E上,、分別為橢圓的兩個焦點,求的范圍;
證明:直線OM的斜率與l的斜率的乘積為定值;
若l過點,射線OM與橢圓E交于點P,四邊形OAPB能否為平行四邊形?若能,求此時直線l斜率;若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)政府為了解決農(nóng)村教師的住房問題,計劃征用一塊土地蓋一幢建筑總面積為10000公寓樓(每層的建筑面積相同).已知士地的征用費為,土地的征用面積為第一層的倍,經(jīng)工程技術(shù)人員核算,第一層建筑費用為,以后每增高一層,其建筑費用就增加,設(shè)這幢公寓樓高層數(shù)為n,總費用為萬元.(總費用為建筑費用和征地費用之和)
(1)若總費用不超過835萬元,求這幢公寓樓最高有多少層數(shù)?
(2)試設(shè)計這幢公寓的樓層數(shù),使總費用最少,并求出最少費用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正數(shù)數(shù)列、滿足:≥,且對一切k≥2,k,是與的等差中項,是與的等比中項.
(1)若,,求,的值;
(2)求證:是等差數(shù)列的充要條件是為常數(shù)數(shù)列;
(3)記,當(dāng)n≥2(n)時,指出與的大小關(guān)系并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體,則下列四個命題:
①點在直線上運動時,直線與直線所成角的大小不變
②點在直線上運動時,直線與平面所成角的大小不變
③點在直線上運動時,二面角的大小不變
④點在直線上運動時,三棱錐的體積不變
其中的真命題是 ( )
A.①③B.③④C.①②④D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形是矩形,平面,,點在線段上(不為端點),且滿足,其中.
(1)若,求直線與平面所成的角的大小;
(2)是否存在,使是的公垂線,即同時垂直?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若在區(qū)間上不是單調(diào)函數(shù),求實數(shù)的范圍;
(2)若對任意,都有恒成立,求實數(shù)的取值范圍;
(3)當(dāng)時,設(shè),對任意給定的正實數(shù),曲線上是否存在兩點,,使得是以(為坐標原點)為直角頂點的直角三角形,而且此三角形斜邊中點在軸上?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=BC=4,點E在線段AB上.過點E作EF∥BC交AC于點F,將△AEF沿EF折起到△PEF的位置(點A與P重合),使得∠PEB=60°.
(1)求證:EF⊥PB.
(2)試問:當(dāng)點E在線段AB上移動時,二面角PFCB的平面角的余弦值是否為定值?若是,求出其定值;若不是,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com