【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)),直線與曲線交于,兩點.

(1)以坐標原點為極點,軸正半軸為極軸建立極坐標系,求曲線的極坐標方程;

(2)若,點,求的值.

【答案】1;(2

【解析】

1)先把參數(shù)方程變?yōu)槠胀ǚ匠,再根?jù),把普通方程變?yōu)闃O坐標方程;

2)把直線的參數(shù)方程代入圓的普通方程得到一個關于t的一元二次方程,根據(jù)韋達定理求出的值,即可得到本題答案.

1)因為曲線的參數(shù)方程為為參數(shù)),

所以曲線的普通方程為,即.

所以曲線的極坐標方程為.

2)由直線的參數(shù)方程易知,直線的普通方程為.

由(1)知,曲線是圓心為,半徑為的圓.因為,

所以圓心到直線的距離為,所以

解得(舍去),將直線的參數(shù)方程為參數(shù))

代入曲線的直角坐標方程得

整理得,則.

,對應的參數(shù)分別為,,,

由于點在圓外,所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),下述四個結論:

是偶函數(shù);

的最小正周期為;

的最小值為0;

上有3個零點

其中所有正確結論的編號是(

A.①②B.①②③C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有橡皮泥制作的底面半徑為5,高為9的圓錐和底面半徑為,高為8的圓柱各一個.若將它們重新制作成總體積與各自的高均保持不變,但底面半徑相同的新的圓錐與圓柱各一個,則新的底面半徑為_________;若新圓錐的內(nèi)接正三棱柱表面積取到最大值,則此正三棱柱的底面邊長為_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱柱的底面是菱形,平面,是側棱上的點

1)證明:平面;

2)若的中點,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點滿足方程.

1)求點M的軌跡C的方程;

2)作曲線C關于軸對稱的曲線,記為,在曲線C上任取一點,過點P作曲線C的切線l,若切線l與曲線交于A,B兩點,過點A,B分別作曲線的切線,證明的交點必在曲線C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)設,(其中的導數(shù)),求的最小值;

2)設,若有零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的偶函數(shù)滿足,且時,,則函數(shù)上的所有零點之和為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,

1)求證:

2)若為線段上的一點,,,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,底面ABC,.D,E,N分別為棱PAPC,BC的中點,M是線段AD的中點,,.

1)求證:平面BDE

2)求二面角C-EM-N的正弦值.

3)已知點H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.

查看答案和解析>>

同步練習冊答案