【題目】某企業(yè)為了提高企業(yè)利潤,從2014年至2018年每年都對(duì)生產(chǎn)環(huán)節(jié)的改進(jìn)進(jìn)行投資,投資金額(單位:萬元)與年利潤增長量(單位:萬元)的數(shù)據(jù)如表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
投資金額/萬元 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 |
年利潤增長量/萬元 | 6.0 | 7.0 | 9.0 | 11.0 | 12.0 |
(1)記年利潤增長量投資金額,現(xiàn)從2014年至2018年這5年中抽出兩年進(jìn)行調(diào)查分析,求所抽兩年都是萬元的概率;
(2)請(qǐng)用最小二乘法求出關(guān)于的回歸直線方程;如果2019年該企業(yè)對(duì)生產(chǎn)環(huán)節(jié)改進(jìn)的投資金額為10萬元,試估計(jì)該企業(yè)在2019年的年利潤增長量為多少?
參考公式:,;
參考數(shù)據(jù):,.
【答案】(1); (2)該企業(yè)在該年的年利潤增長量大約為15.4萬元.
【解析】
(1)利用列舉法列舉出年中抽出兩年的基本事件總數(shù),然后求得其中兩年都是的基本事件數(shù),根據(jù)古典概型概率計(jì)算公式,計(jì)算出所求的概率.
(2)利用回歸直線方程計(jì)算公式,計(jì)算出回歸直線方程,并將代入回歸直線方程,求得年利潤增長量的估計(jì)值.
(1)2014年至2018年的分別記為:,,,,,
抽取兩年的基本事件有:
,,,,,,,,,,共10種,
其中兩年都是的基本事件有:,,,共3種,
故所求概率為.
(2),,
則,
所以回歸直線方程為,將代入上述方程得,
即該企業(yè)在該年的年利潤增長量大約為15.4萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)證明:當(dāng)時(shí),;
(2)若有極大值,求的取值范圍;
(3)若在處取極大值,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),對(duì)稱軸為x軸,拋物線C過點(diǎn)A(4,4),過拋物線C的焦點(diǎn)F作傾斜角等于45°的直線l,直線l交拋物線C于M、N兩點(diǎn).
(1)求拋物線C的方程;
(2)求線段MN的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對(duì)任意, 有唯一確定的與之對(duì)應(yīng),則稱為關(guān)于, 的二元函數(shù),現(xiàn)定義滿足下列性質(zhì)的為關(guān)于實(shí)數(shù), 的廣義“距離”.
()非負(fù)性: ,當(dāng)且僅當(dāng)時(shí)取等號(hào);
()對(duì)稱性: ;
()三角形不等式: 對(duì)任意的實(shí)數(shù)均成立.
給出三個(gè)二元函數(shù):①;②;③,
則所有能夠成為關(guān)于, 的廣義“距離”的序號(hào)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中:
①已知點(diǎn),動(dòng)點(diǎn)滿足,則點(diǎn)的軌跡是一個(gè)圓;
②已知,則動(dòng)點(diǎn)的軌跡是雙曲線;
③兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值就越接近于1;
④在平面直角坐標(biāo)系內(nèi),到點(diǎn)和直線的距離相等的點(diǎn)的軌跡是拋物線;
正確的命題是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年9月24日,阿貝爾獎(jiǎng)和菲爾茲獎(jiǎng)雙料得主、英國著名數(shù)學(xué)家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學(xué)界的震動(dòng),在1859年,德國數(shù)學(xué)家黎曼向科學(xué)院提交了題目為《論小于某值的素?cái)?shù)個(gè)數(shù)》的論文并提出了一個(gè)命題,也就是著名的黎曼猜想.在此之前,著名數(shù)學(xué)家歐拉也曾研究過這個(gè)問題,并得到小于數(shù)字的素?cái)?shù)個(gè)數(shù)大約可以表示為的結(jié)論(素?cái)?shù)即質(zhì)數(shù),).根據(jù)歐拉得出的結(jié)論,如下流程圖中若輸入的值為,則輸出的值應(yīng)屬于區(qū)間( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,設(shè)直線與軸的交點(diǎn)為,過點(diǎn)且斜率為的直線與橢圓交于兩點(diǎn),為線段的中點(diǎn).
(1)若直線的傾斜角為,求的值;
(2)設(shè)直線交直線于點(diǎn),證明:直線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了工廠技術(shù)改造后某種型號(hào)設(shè)備的使用年限x和所支出的維修費(fèi)y(萬元)的幾組對(duì)照數(shù)據(jù):
x(年) | 2 | 3 | 4 | 5 | 6 |
y(萬元) | 1 | 2.5 | 3 | 4 | 4.5 |
(1)若知道y對(duì)x呈線性相關(guān)關(guān)系,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)已知該工廠技術(shù)改造前該型號(hào)設(shè)備使用10年的維修費(fèi)用為9萬元,試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)該型號(hào)設(shè)備技術(shù)改造后,使用10年的維修費(fèi)用能否比技術(shù)改造前降低?參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量,,其中,則下列判斷錯(cuò)誤的是( )
A.向量與軸正方向的夾角為定值(與、之值無關(guān))
B.的最大值為
C.與夾角的最大值為
D.的最大值為l
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com