已知動點
到定點
的距離與點
到定直線
:
的距離之比為
.
(1)求動點
的軌跡
的方程;
(2)設
、
是直線
上的兩個點,點
與點
關于原點
對稱,若
,求
的最小值.
(1)
(2)
(1)解:設點
,
依題意,有
.
整理,得
.所以動點
的軌跡
的方程為
.
(2)解:∵點
與點
關于原點
對稱,
∴點
的坐標為
.
∵
、
是直線
上的兩個點,
∴可設
,
(不妨設
).
∵
,∴
.
即
.即
.
由于
,則
,
.
∴
.
當且僅當
,
時,等號成立.
故
的最小值為
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知點
,B、C在
軸上,且
,
(1)求
外心的軌跡
的方程;
(2)若P、Q為軌跡S上兩點,求實數(shù)
范圍,使
,且
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知兩定點
,動點
滿足
。
(1) 求動點
的軌跡方程;
(2) 設點
的軌跡為曲線
,試求出雙曲線
的漸近線與曲線
的交點坐標。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知曲線
的方程為:
(1)若曲線
是橢圓,求
的取值范圍;
(2)若曲線
是雙曲線,且有一條漸近線的傾斜角為
,求此雙曲線的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在平面直角坐標系
中,過定點
作直線與拋物線
(
)相交于
兩點.
(I)若點
是點
關于坐標原點
的對稱點,求
面積的最小值;
(II)是否存在垂直于
軸的直線
,使得
被以
為直徑的圓截得的弦長恒為定值?若存在,求出
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)一束光線從點
出發(fā),經(jīng)直線
l:
上一點
反射后,恰好穿過點
.(1)求
點的坐標;(2)求以
、
為焦點且過點
的橢圓
的方程; (3)設點
是橢圓
上除長軸兩端點外的任意一點,試問在
軸上是否存在兩定點
、
,使得直線
、
的斜率之積為定值?若存在,請求出定值,并求出所有滿足條件的定點
、
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
,動點
滿足
.
(Ⅰ)求動點
的軌跡
的方程;
(Ⅱ)過點
作直線
與曲線
交于
兩點,若
,求直線
的方程;
(Ⅲ)設
為曲線
在第一象限內(nèi)的一點,曲線
在
處的切線與
軸分別交于點
,求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知直線
與曲線
交于不同的兩點
,
為坐標原點.
(Ⅰ)若
,求證:曲線
是一個圓;
(Ⅱ)若
,當
且
時,求曲線
的離心率
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓
與雙曲線
有相同的焦點,則橢圓的離心率為
查看答案和解析>>