已知,動(dòng)點(diǎn)滿足.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)過(guò)點(diǎn)作直線與曲線交于兩點(diǎn),若,求直線的方程;
(Ⅲ)設(shè)為曲線在第一象限內(nèi)的一點(diǎn),曲線處的切線與軸分別交于點(diǎn),求面積的最小值.
(1)(2)(3)2
(Ⅰ)動(dòng)點(diǎn)的軌跡的方程為  ;  ………………………………3分
(Ⅱ)解法1 當(dāng)直線的斜率不存在時(shí),,,不合題意;
當(dāng)直線的斜率存在時(shí),設(shè)過(guò)的直線,代入曲線的方程得
設(shè),則


,       解得
故所求的直線的方程為;…………………………………9分
解法2 當(dāng)直線軸時(shí), ,不合題意;
當(dāng)直線不為軸時(shí),設(shè)過(guò)的直線,代入曲線的方程得

設(shè),則

  =    解得
故所求的直線的方程為;…………………………………9分
(Ⅲ)設(shè)
處曲線的切線方程為 
;  令.

由 ,  
.

面積的最小值為2.…………………………………………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知兩定點(diǎn)、,且的等差中項(xiàng),則動(dòng)點(diǎn)的軌跡是(    )
A.橢圓B.雙曲線C.拋物線D.線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離與點(diǎn)到定直線的距離之比為
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)是直線上的兩個(gè)點(diǎn),點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知定點(diǎn)和直線,過(guò)定點(diǎn)F與直線相切的動(dòng)圓圓心為點(diǎn)C。(1)求動(dòng)點(diǎn)C的軌跡方程;  (2)過(guò)點(diǎn)F在直線l2交軌跡于兩點(diǎn)P、Q,交直線l1于點(diǎn)R,求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題共12分)已知橢圓E:的焦點(diǎn)坐標(biāo)為),點(diǎn)M(,)在橢圓E上(1)求橢圓E的方程;(2)O為坐標(biāo)原點(diǎn),⊙的任意一條切線與橢圓E有兩個(gè)交點(diǎn),,求⊙的半徑。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題



(1)P,  Q中點(diǎn)M的軌跡方程;
(2)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓C1:(x+3)2+y2=1和圓C2:(x-3)2+y2=9,動(dòng)圓M同時(shí)與圓C1及圓C2相外切,求動(dòng)圓圓心M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)的焦點(diǎn)作直線交拋物線與兩點(diǎn),若的長(zhǎng)分別是,則                                           (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若直線與曲線
為參數(shù),)有兩個(gè)公共點(diǎn)AB,且|AB|=2,則實(shí)數(shù)a的值為          ;在此條件下,以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸正方向?yàn)闃O軸建立坐標(biāo)系,則曲線C的極坐標(biāo)方程為            .

查看答案和解析>>

同步練習(xí)冊(cè)答案