【題目】隨著共享單車的成功運營,更多的共享產(chǎn)品逐步走人大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮,某公司隨機(jī)抽取1000人對共享產(chǎn)品是否對日常生活有益進(jìn)行了問卷調(diào)查,并對參與調(diào)查的1000人中的性別以及意見進(jìn)行了分類,得到的數(shù)據(jù)如下表所示:

總計

認(rèn)為共享產(chǎn)品對生活有益

認(rèn)為共享產(chǎn)品對生活無益

總計

1)求出表格中的值,并根據(jù)表中的數(shù)據(jù),判斷能否在犯錯誤的概率不超過的前提下,認(rèn)為對共享產(chǎn)品的態(tài)度與性別有關(guān)系?

2)現(xiàn)按照分層抽樣從認(rèn)為共享產(chǎn)品對生活無益的人員中隨機(jī)抽取6人,再從6人中隨機(jī)抽取2人贈送超市購物券作為答謝,求恰有1人是女性的概率.

參考公式:.

【答案】1;能(2

【解析】

1)由總數(shù)為1000,可求,,進(jìn)而分別求出,利用題目所給公式計算出,與表格中數(shù)據(jù)進(jìn)行對比,得出檢驗結(jié)果;

2)由分層抽樣的結(jié)果知道抽出的6人中,4名女性,2名男性,則可將其全部列舉出來最后求得相應(yīng)概率.

解:(1)依題意,.

在本次的實驗中,的觀測值.

∴在犯錯誤的概率不超過的前提下,認(rèn)為對共享產(chǎn)品的態(tài)度與性別有關(guān)系;

2)依題意,應(yīng)該從認(rèn)為共享產(chǎn)品對生活無益的女性中抽取4人,記為,從認(rèn)為共享產(chǎn)品對生活無益的男性中抽取2人,記為,.

從以上6人中隨機(jī)抽取2人,所有的情況為:,,共15種,

其中滿足條件的為8種情況,故所求概率;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠今年1月、2月、3月生產(chǎn)某產(chǎn)品分別為1萬件、1.2萬件、1.3萬件,為了估計以后每月的產(chǎn)量,以這三個月的產(chǎn)量為依據(jù),用一個函數(shù)模擬該產(chǎn)品的月產(chǎn)量,與月份的關(guān)系,模擬函數(shù)可以選用二次函數(shù)或函數(shù)、、為常數(shù))已知四月份該產(chǎn)品的產(chǎn)量為1.37萬件,請問用以上哪個函數(shù)作模擬函數(shù)較好?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地需要修建一條大型輸油管道通過720千米寬的荒漠地帶,該段輸油管道兩端的輸油站已建好,余下工程只需要在該段兩端已建好的輸油站之間鋪設(shè)輸油管道和等距離修建增壓站(又稱泵站).經(jīng)預(yù)算,修建一個增壓站的工程費用為108萬元,鋪設(shè)距離為千米的相鄰兩增壓站之間的輸油管道費用為萬元.設(shè)余下工程的總費用為萬元.

1)試將表示成關(guān)于的函數(shù);

2)需要修建多少個增壓站才能使總費用最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一場小型晚會有個唱歌節(jié)目和個相聲節(jié)目,要求排出一個節(jié)目單.

1個相聲節(jié)目要排在一起,有多少種排法?

2個相聲節(jié)目彼此要隔開,有多少種排法?

3)第一個節(jié)目和最后一個節(jié)目都是唱歌節(jié)目,有多少種排法?

4)前個節(jié)目中要有相聲節(jié)目,有多少種排法?

(要求:每小題都要有過程,且計算結(jié)果都用數(shù)字表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2axb,g(x)=ex(cxd),若曲線yf(x)和曲線yg(x)都過點P(0,2),且在點P處有相同的切線y=4x+2.

(1)求a,b,c,d的值;

(2)若x≥-2時,恒有f(x)≤kg(x),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知長方體中,底面ABCD的長AB=4,寬BC=4,高=3,點M,N分別是BC,的中點,點P在上底面中,點Q上,若,則PQ長度的最小值是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正四棱椎P-ABCD中,底面ABCD的邊長為2,側(cè)棱長為.

(I)若點EPD上的點,且PB∥平面EAC.試確定E點的位置;

(Ⅱ)在(I)的條件下,點F為線段PA上的一點且,若平面AEC和平面BDF所成的銳二面角的余弦值為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

1)求上的單調(diào)區(qū)間;

2)當(dāng)時,設(shè)函數(shù),時,證明

3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年“雙十一”期間,某商場舉辦了一次有獎促銷活動,顧客消費每滿1000元可參加一次抽獎(例如:顧客甲消費930元,不得參與抽獎;顧客乙消費3400元,可以抽獎三次)。如圖1,在圓盤上繪制了標(biāo)有A,B,C,D的八個扇形區(qū)域,每次抽獎時由顧客按動按鈕使指針旋轉(zhuǎn)一次,旋轉(zhuǎn)結(jié)束時指針會隨機(jī)停在圓盤上的某一個位置,顧客獲獎的獎次由指針?biāo)竻^(qū)域決定(指針與區(qū)域邊界線粗細(xì)忽略不計)。商家規(guī)定:指針停在標(biāo)A,B,C,D的扇形區(qū)域分別對應(yīng)的獎金為200元、150元、100元和50元。已知標(biāo)有A,B,C,D的扇形區(qū)域的圓心角成等差數(shù)列,且標(biāo)D的扇形區(qū)域的圓心角是標(biāo)A的扇形區(qū)域的圓心角的4倍.

(I)某顧客只抽獎一次,設(shè)該顧客抽獎所獲得的獎金數(shù)為X元,求X的分布列和數(shù)學(xué)期望;

(II)如圖2,該商場統(tǒng)計了活動期間一天的顧客消費情況.現(xiàn)按照消費金額分層抽樣選出15位顧客代表,其中獲得獎金總數(shù)不足100元的顧客代表有7位.現(xiàn)從這7位顧客代表中隨機(jī)選取兩位,求這兩位顧客的獎金總數(shù)和仍不足100元的概率.

查看答案和解析>>

同步練習(xí)冊答案