【題目】為了研究經(jīng)常使用手機(jī)是否對(duì)數(shù)學(xué)學(xué)習(xí)成績(jī)有影響,某校高二數(shù)學(xué)研究性學(xué)習(xí)小組進(jìn)行了調(diào)查,隨機(jī)抽取高二年級(jí)50名學(xué)生的一次數(shù)學(xué)單元測(cè)試成績(jī),并制成下面的2×2列聯(lián)表:

及格

不及格

合計(jì)

很少使用手機(jī)

20

5

25

經(jīng)常使用手機(jī)

10

15

25

合計(jì)

30

20

50

則有( 。┑陌盐照J(rèn)為經(jīng)常使用手機(jī)對(duì)數(shù)學(xué)學(xué)習(xí)成績(jī)有影響.

參考公式:,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

A.97.5%B.99%C.99.5%D.99.9%

【答案】C

【解析】

根據(jù)2×2列聯(lián)表,求出的觀測(cè)值,結(jié)合題中表格數(shù)據(jù)即可得出結(jié)論.

由題意,可得:

,所以有99.5%的把握認(rèn)為經(jīng)常使用手機(jī)對(duì)數(shù)學(xué)學(xué)習(xí)成績(jī)有影響.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為, 為焦點(diǎn)是的拋物線上一點(diǎn), 為直線上任一點(diǎn), 分別為橢圓的上,下頂點(diǎn),且三點(diǎn)的連線可以構(gòu)成三角形.

(1)求橢圓的方程;

(2)直線與橢圓的另一交點(diǎn)分別交于點(diǎn),求證:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱柱,平面平面,,分別是的中點(diǎn).

(1)證明:;

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于定義在上的函數(shù),有下列四個(gè)命題:

①若是奇函數(shù),則的圖象關(guān)于點(diǎn)對(duì)稱;

②若對(duì),有,則的圖象關(guān)于直線對(duì)稱;

③若對(duì),有,則的圖象關(guān)于點(diǎn)對(duì)稱;

④函數(shù)與函數(shù)的圖像關(guān)于直線對(duì)稱.

其中正確命題的序號(hào)為__________.(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論正確的是(

A.各個(gè)面都是三角形的幾何體是三棱錐

B.以三角形的一條邊所在直線為旋轉(zhuǎn)軸,其余兩邊繞旋轉(zhuǎn)軸旋轉(zhuǎn)形成的曲面所圍成的幾何體叫圓錐

C.棱錐的側(cè)棱長(zhǎng)與底面多邊形的邊長(zhǎng)都相等,則該棱錐可能是六棱錐

D.圓錐的頂點(diǎn)與底面圓周上的任意一點(diǎn)的連線都是母線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)2018年招聘員工,其中,,,五種崗位的應(yīng)聘人數(shù)、錄用人數(shù)和錄用比例(精確到1%)如下:

崗位

男性

應(yīng)聘人數(shù)

男性

錄用人數(shù)

男性

錄用比例

女性

應(yīng)聘人數(shù)

女性

錄用人數(shù)

女性

錄用比例

269

167

40

24

40

12

202

62

177

57

184

59

44

26

38

22

3

2

3

2

總計(jì)

533

264

467

169

(1)從表中所有應(yīng)聘人員中隨機(jī)選擇1人,試估計(jì)此人被錄用的概率;

(2)從應(yīng)聘崗位的6人中隨機(jī)選擇2人.記為這2人中被錄用的人數(shù),求的分布列和數(shù)學(xué)期望;

(3)表中,,,,各崗位的男性、女性錄用比例都接近(二者之差的絕對(duì)值不大于),但男性的總錄用比例卻明顯高于女性的總錄用比例.研究發(fā)現(xiàn),若只考慮其中某四種崗位,則男性、女性的總錄用比例也接近,請(qǐng)寫出這四種崗位.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

在如圖所示的多面體中,四邊形都為矩形。

)若,證明:直線平面;

)設(shè), 分別是線段, 的中點(diǎn),在線段上是否存在一點(diǎn),使直線平面?請(qǐng)證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,離心率為,過點(diǎn)且與軸垂直的直線被橢圓截得的線段長(zhǎng)為 .

(1)求橢圓的方程;

(2)若上存在兩點(diǎn),橢圓上存在兩個(gè)點(diǎn)滿足:三點(diǎn)共線,三點(diǎn)共線,且,求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】哈師大附中高三學(xué)年統(tǒng)計(jì)甲、乙兩個(gè)班級(jí)一模數(shù)學(xué)分?jǐn)?shù)(滿分150分),每個(gè)班級(jí)20名同學(xué),現(xiàn)有甲、乙兩班本次考試數(shù)學(xué)分?jǐn)?shù)如下列莖葉圖所示:

(I)根據(jù)基葉圖求甲、乙兩班同學(xué)數(shù)學(xué)分?jǐn)?shù)的中位數(shù),并將乙班同學(xué)的分?jǐn)?shù)的頻率分布直方圖填充完整;

(Ⅱ)根據(jù)基葉圖比較在一?荚囍,甲、乙兩班同學(xué)數(shù)學(xué)分?jǐn)?shù)的平均水平和分?jǐn)?shù)的分散程度(不要求計(jì)算出具體值,給出結(jié)論即可)

(Ⅲ)若規(guī)定分?jǐn)?shù)在的成績(jī)?yōu)榱己,分(jǐn)?shù)在的成績(jī)?yōu)閮?yōu)秀,現(xiàn)從甲、乙兩班成績(jī)?yōu)閮?yōu)秀的同學(xué)中,按照各班成績(jī)?yōu)閮?yōu)秀的同學(xué)人數(shù)占兩班總的優(yōu)秀人數(shù)的比例分層抽樣,共選出12位同學(xué)參加數(shù)學(xué)提優(yōu)培訓(xùn),求這12位同學(xué)中恰含甲、乙兩班所有140分以上的同學(xué)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案