【題目】(本小題滿分12分)

甲乙兩個(gè)班級(jí)進(jìn)行一門課程的考試,按照學(xué)生考試成績(jī)優(yōu)秀和不優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表:

班級(jí)與成績(jī)列聯(lián)表

優(yōu) 秀

不優(yōu)秀

甲 班

10

35

乙 班

7

38

根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為成績(jī)與班級(jí)有關(guān)系?

附:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】在犯錯(cuò)誤的概率不超過(guò)0.01的前提下不能認(rèn)為成績(jī)與班級(jí)有關(guān)系。

【解析】本試題主要是考查了獨(dú)立性檢驗(yàn)的思想的運(yùn)用,求解分類變量的相關(guān)性問(wèn)題的判定。只要將已知的數(shù)據(jù)代入到關(guān)系式中計(jì)算并比較列表中的數(shù)據(jù)可得結(jié)論。

因?yàn)?/span>

所以在犯錯(cuò)誤的概率不超過(guò)0.01的前提下不能認(rèn)為成績(jī)與班級(jí)有關(guān)系。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)的圖像在處的切線垂直于直線,求實(shí)數(shù)的值及直線的方程;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義在上的奇函數(shù),且時(shí), ,則函數(shù)為自然對(duì)數(shù)的底數(shù))的零點(diǎn)個(gè)數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an},a13,a1021通項(xiàng)an相應(yīng)的函數(shù)是一次函數(shù).

(1) 求數(shù)列{an}的通項(xiàng)公式;

(2) {bn}是由a2a4,a6a8,…組成試求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.

1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;

2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對(duì)理科題的概率均為,答對(duì)文科題的概率均為,若每題答對(duì)得10分,否則得零分.現(xiàn)該生已抽到三道題(兩理一文),求其所得總分的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.

(1)U(AB);

(2)若集合C={x|2xa>0},滿足BCC,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】祖暅原理:“冪勢(shì)既同,則積不容異”.它是中國(guó)古代一個(gè)涉及幾何體體積的問(wèn)題,意思是兩個(gè)同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)為兩個(gè)同高的幾何體,的體積不相等,在等高處的截面積不恒相等,根據(jù)祖暅原理可知,的( )

A. 充分不必要條件 B. 必要不充分條件

C. 充要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】判斷下列集合間的關(guān)系:

(1)A{x|x32},B{x|2x5≥0};

(2)A{xZ|1≤x<3},B{x|x|y|,yA}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,BC邊上的高所在的直線方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0. 若B的坐標(biāo)為(1,2),求△ABC三邊所在直線方程及點(diǎn)C坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案