【題目】已知f(x)=(1+x)m+(1+2x)n(mn∈N*)的展開式中x的系數(shù)為11.

(1)求x2的系數(shù)取最小值時n的值;

(2)當x2的系數(shù)取得最小值時,求f(x)展開式中x的奇次冪項的系數(shù)之和.

【答案】(1);(2)30

【解析】試題分析:1利用二項展開式的通項公式求出展開式的的系數(shù),列出方程得到的關系;利用二項展開式的通項公式求出的系數(shù)的關系代入得到關于的二次函數(shù),配方求出最小值;(2通過對分別賦值兩式子相加求出展開式中的奇次冪項的系數(shù)之和.

試題解析:(1)由已知得C2C11,m2n11x2的系數(shù)為C22C2n(n1)

(11m)2.

m∈N*,m=5時,x2的系數(shù)取得最小值22,此時n3.

(2)由(1)知,當x2的系數(shù)取得最小值時,m5n3.

f(x)(1x)5(12x)3.

設這時f(x)的展開式為f(x)a0a1xa2x2a5x5,

x1a0a1a2a3a4a5253359,

x=-1a0a1a2a3a4a5=-1,兩式相減得2(a1a3a5)60

故展開式中x的奇次冪項的系數(shù)之和為30.

【方法點晴】本題主要考查二項展開式定理的通項與系數(shù),屬于簡單題. 二項展開式定理的問題也是高考命題熱點之一,關于二項式定理的命題方向比較明確,主要從以下幾個方面命題:(1)考查二項展開式的通項公式;(可以考查某一項,也可考查某一項的系數(shù))(2)考查各項系數(shù)和和各項的二項式系數(shù)和;(3)二項展開式定理的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)求證:當時, ;

(Ⅱ)若函數(shù)1,+∞)上有唯一零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知有窮數(shù)列, , , , ,若數(shù)列中各項都是集合的元素,則稱該數(shù)列為數(shù)列.

對于數(shù)列,定義如下操作過程中任取兩項, ,將的值添在的最后,然后刪除, ,這樣得到一個項的新數(shù)列,記作(約定:一個數(shù)也視作數(shù)列).若還是數(shù)列,可繼續(xù)實施操作過程.得到的新數(shù)列記作, ,如此經(jīng)過次操作后得到的新數(shù)列記作

)設, , ,請寫出的所有可能的結(jié)果.

)求證:對數(shù)列實施操作過程后得到的數(shù)列仍是數(shù)列.

)設 , , , , , , ,求的所有可能的結(jié)果,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

)求的單調(diào)區(qū)間;

)若在上存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為響應新農(nóng)村建設,某村計劃對現(xiàn)有舊水渠進行改造,已知舊水渠的橫斷面是一段拋物線弧,頂點為水渠最底端(如圖),渠寬為4m,渠深為2m.

(1)考慮到農(nóng)村耕地面積的減少,為節(jié)約水資源,要減少水渠的過水量,在原水渠內(nèi)填土,使其成為橫斷面為等腰梯形的新水渠(如圖(1)建立平面直角坐標系),新水渠底面與地面平行(不改變渠寬),問新水渠底寬為多少時,所填土的土方量最少?

(2)考慮到新建果園的灌溉需求,要增大水渠的過水量,現(xiàn)把舊水渠改挖(不能填土)成橫斷面為等腰梯形的新水渠(如圖(2)建立平面直角坐標系),使水渠的底面與地面平行(不改變渠深),要使所挖土的土方量最少,請你設計水渠改挖后的底寬,并求出這個底寬.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足 ,其中.

(1)設,求證:數(shù)列是等差數(shù)列,并求出的通項公式;

(2)設,數(shù)列的前項和為,是否存在正整數(shù),使得對于恒成立,若存在,求出的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù))有兩個極值點,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠的A、B、C三個不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進行檢測.

車間

A

B

C

數(shù)量

50

150

100

(1)求這6件樣品中來自A、B、C各車間產(chǎn)品的數(shù)量;

(2)若在這6件樣品中隨機抽取2件進行進一步檢測,求這2件商品來自相同車間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中, 為坐標原點, 是雙曲線上的兩個動點,動點滿足,直線與直線斜率之積為2,已知平面內(nèi)存在兩定點、,使得為定值,則該定值為________

查看答案和解析>>

同步練習冊答案