【題目】正整數(shù)數(shù)列滿足:,
(1)寫出數(shù)列的前5項(xiàng);
(2)將數(shù)列中所有值為1的項(xiàng)的項(xiàng)數(shù)按從小到大的順序依次排列,得到數(shù)列,試用表示(不必證明);
(3)求最小的正整數(shù),使.
【答案】(1)前五項(xiàng)為,,,,;(2);(3).
【解析】
(1)根據(jù)遞推關(guān)系令依次求出前五項(xiàng);
(2)依次寫出部分項(xiàng),觀察規(guī)律歸納結(jié)果,加以分析其正確性;
(3)根據(jù)(2)的結(jié)論求出,再把轉(zhuǎn)化為進(jìn)行分類討論,驗(yàn)證其與2013的大小關(guān)系,直到求解得出出具體值.
(1)由題:,,
,,
,,
,,
,
所以前五項(xiàng)為,,,,;
(2)由題
,
歸納,
顯然當(dāng)時(shí),結(jié)論成立,
假設(shè)已有,顯然,
則,
,
,
,
…
可以歸納:,
故當(dāng)時(shí),
因此成立;
(3)由(2)
所以,
即是以3為首項(xiàng),3為公比的等比數(shù)列,
,,
由可知:
當(dāng)時(shí),,
因此當(dāng)時(shí),;
當(dāng)時(shí),或,即不能使成立,
考慮時(shí):
由(2)
則解得,則,
所以,
所以使的最小的正整數(shù),
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求在點(diǎn)處的切線方程;
(2)若方程有兩個(gè)實(shí)數(shù)根,,且,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),都有成立,求的取值范圍;
(Ⅲ)試問過點(diǎn)可作多少條直線與曲線相切?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,準(zhǔn)線方程為,直線過定點(diǎn)()且與拋物線交于、兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)求拋物線的方程;
(2)是否為定值,若是,求出這個(gè)定值;若不是,請(qǐng)說明理由;
(3)當(dāng)時(shí),設(shè),記,求的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,有一個(gè)長(zhǎng)方體形狀的敞口玻璃容器,底面是邊長(zhǎng)為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖②),且傾斜時(shí)底面的一條棱始終在桌面上(圖①、②均為容器的縱截面).
(1)要使傾斜后容器內(nèi)的溶液不會(huì)溢出,角的最大值是多少?
(2)現(xiàn)需要倒出不少于的溶液,當(dāng)時(shí),能實(shí)現(xiàn)要求嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年諾貝爾生理學(xué)或醫(yī)學(xué)獎(jiǎng)獲得者威廉·凱林(WilliamG.KaelinJr)在研究腎癌的抑制劑過程中使用的輸液瓶可以視為兩個(gè)圓柱的組合體.開始輸液時(shí),滴管內(nèi)勻速滴下液體(滴管內(nèi)液體忽略不計(jì)),設(shè)輸液開始后分鐘,瓶?jī)?nèi)液面與進(jìn)氣管的距離為厘米,已知當(dāng)時(shí),.如果瓶?jī)?nèi)的藥液恰好分鐘滴完.則函數(shù)的圖像為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元263年左右,我國(guó)古代數(shù)學(xué)家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率,他從單位圓內(nèi)接正六邊形算起,令邊數(shù)一倍一倍地增加,即12,24,48,…,192,…,逐個(gè)算出正六邊形,正十二邊形,正二十四邊形,…,正一百九十二邊形,…的面積,這些數(shù)值逐步地逼近圓面積,劉徽算到了正一百九十二邊形,這時(shí)候的近似值是3.141024,劉徽稱這個(gè)方法為“割圓術(shù)”,并且把“割圓術(shù)”的特點(diǎn)概括為“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”.劉徽這種想法的可貴之處在于用已知的、可求的來逼近未知的、要求的,用有限來逼近無窮,這種思想極其重要,對(duì)后世產(chǎn)生了巨大影響.按照上面“割圓術(shù)”,用正二十四邊形來估算圓周率,則的近似值是( )(精確到).(參考數(shù)據(jù))
A.3.14B.3.11C.3.10D.3.05
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①,,②,,③,三個(gè)條件中任選一個(gè)補(bǔ)充在下面問題中,并加以解答.
已知的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若,______,求的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形是等腰梯形,,,,為的中點(diǎn).將沿折起,如圖2,點(diǎn)是棱上的點(diǎn).
(1)若為的中點(diǎn),證明:平面平面;
(2)若,試確定的位置,使二面角的余弦值等于.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com