【題目】如圖,四棱錐的底面是正方形,側棱底面,,是的中點.
(1)證明:平面;
(2)求二面角的余弦值;
(3)若點在線段(不包含端點)上,且直線平面,求線段的長.
【答案】(1)證明見解析(2)(3)
【解析】
(1)建立以為坐標原點,分別以所在直線為軸、軸、軸的空間直角坐標系,再標出點的坐標,利用空間向量的應用即可得證;
(2)求出平面的一個法向量,平面的一個法向量,再利用數(shù)量積公式求解即可;
(3)假設棱上存在點,使平面,由求解即可.
證明:(1)以為坐標原點,分別以所在直線為軸、軸、軸建立空間直角坐標系,
設,則,,,
則,,,
設是平面的一個法向量,
則由,得,取,得.
,,
又平面,
平面.
(2)解:由(1)知是平面的一個法向量,
又是平面的一個法向量.
設二面角的平面角為,由圖可知,,
故二面角的平面角的余弦值為.
(3)假設棱上存在點,使平面,
設,
則,
,,,
由得,
解得,
,
則.
科目:高中數(shù)學 來源: 題型:
【題目】條形碼是由一組規(guī)則排列的條、空及其對應的代碼組成,用來表示一定的信息,我們通常見的條形碼是“”通用代碼,它是由從左到右排列的個數(shù)字(用,,…,表示)組成,這些數(shù)字分別表示前綴部分、制造廠代碼、商品代碼和校驗碼,其中是校驗碼,用來校驗前個數(shù)字代碼的正確性.圖(1)是計算第位校驗碼的程序框圖,框圖中符號表示不超過的最大整數(shù)(例如).現(xiàn)有一條形碼如圖(2)所示(),其中第個數(shù)被污損,那么這個被污損數(shù)字是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下表是我省某地區(qū)2012年至2018年農村居民家庭年純收入(單位:萬元)的數(shù)據如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
年純收入 | 2 | 3 | 3.5 | 4 | 4.5 | 5 | 6 |
(1)求關于的線性回歸方程;
(2)利用(1)中的回歸方程,分析2012年至2018年該地區(qū)農村居民家庭年純收入的變化情況,并預測該地區(qū)2019年農村居民家庭年純收入(結果精確到0.1)。
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:,。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)(為常數(shù),是自然對數(shù)的底數(shù))。
(1)當時,求函數(shù)的單調區(qū)間;
(2)若函數(shù)在內存在唯一極值點,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“既要金山銀山,又要綠水青山”。某風景區(qū)在一個直徑為米的半圓形花圓中設計一條觀光線路。打算在半圓弧上任選一點(與不重合),沿修一條直線段小路,在路的兩側(注意是兩側)種植綠化帶;再沿弧修一條弧形小路,在小路的一側(注意是一側)種植綠化帶,小路與綠化帶的寬度忽略不計。
(1)設(弧度),將綠化帶的總長度表示為的函數(shù);
(2)求綠化帶的總長度的最大值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程是,曲線的參數(shù)方程為:(為參數(shù)).
(1)求曲線,的直角坐標方程;
(2)設曲線,交于點,,已知點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
(Ⅰ)若在上的最大值為,求實數(shù)b的值;
(Ⅱ)若對任意x∈[1,e],都有恒成立,求實數(shù)a的取值范圍;
(Ⅲ)在(Ⅰ)的條件下,設,對任意給定的正實數(shù)a,曲線y=F(x)上是否存在兩點P、Q,使得△POQ是以O(O為坐標原點)為直角頂點的直角三角形,且此三角形斜邊中點在y軸上?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com