【題目】某超市計(jì)劃按月訂購(gòu)一種飲料,每天進(jìn)貨量相同,進(jìn)貨成本每瓶3元,售價(jià)每瓶5元,每天未售出的飲料最后打4折當(dāng)天全部處理完根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫單位:有關(guān)如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為100瓶為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得到下面的頻數(shù)分布表:
最高氣溫 | ||||||
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.
Ⅰ求六月份這種飲料一天的需求量單位:瓶的分布列,并求出期望EX;
Ⅱ設(shè)六月份一天銷售這種飲料的利潤(rùn)為單位:元,且六月份這種飲料一天的進(jìn)貨量為單位:瓶,請(qǐng)判斷Y的數(shù)學(xué)期望是否在時(shí)取得最大值?
【答案】(1)見解析(2)見解析
【解析】
Ⅰ由題意知X的可能取值為100,300,500,分別求出相應(yīng)的概率,由此能求出X的分布列和.Ⅱ六月份這種飲料的進(jìn)貨量n,當(dāng)時(shí),求出,故當(dāng)時(shí),Y的數(shù)學(xué)期望達(dá)到最大值,最大值為520元;當(dāng)時(shí),,故當(dāng)時(shí),Y的數(shù)學(xué)期望達(dá)到最大值,最大值為480元由此能求出時(shí),y的數(shù)學(xué)期望達(dá)到最大值,最大值為520元.
解:Ⅰ由題意知X的可能取值為100,300,500,
,
,
,
的分布列為:
X | 100 | 300 | 500 |
P |
.
Ⅱ由題意知六月份這種飲料的進(jìn)貨量n滿足,
當(dāng)時(shí),
若最高氣溫不低于25,則,
若最高氣溫位于,則,
若最高氣溫低于20,則,
,
此時(shí),時(shí),Y的數(shù)學(xué)期望達(dá)到最大值,最大值為520元,
當(dāng)時(shí),
若最高氣溫不低于25,則,
若最高氣溫位于,則,
若最高氣溫低于20,則,
,
此時(shí),時(shí),Y的數(shù)學(xué)期望達(dá)到最大值,最大值為480元,
時(shí),Y的數(shù)學(xué)期望值為:不是最大值,
時(shí),y的數(shù)學(xué)期望達(dá)到最大值,最大值為520元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】紙是生活中最常用的紙規(guī)格.系列的紙張規(guī)格特色在于:①、、、…、,所有尺寸的紙張長(zhǎng)寬比都相同.②在系列紙中,前一個(gè)序號(hào)的紙張以兩條長(zhǎng)邊中點(diǎn)連線為折線對(duì)折裁剪分開后,可以得到兩張后面序號(hào)大小的紙,比如1張紙對(duì)裁后可以的到2張紙,1張紙對(duì)裁可以得到2張紙,以此類推.這是因?yàn)?/span>系列的紙張長(zhǎng)寬比為這一特殊比例,所以具備這種特性.已知紙規(guī)格為84.1厘米×118.9厘米().那么紙的長(zhǎng)度為( )
A.14.8厘米B.21厘米C.25.1厘米D.29.7厘米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,,當(dāng)n≥2時(shí),其前n項(xiàng)和滿足,設(shè)數(shù)列的前n項(xiàng)和為,則滿足≥5的最小正整數(shù)n是( )
A.10B.9C.8D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)遞增區(qū)間.
(2)在ΔABC中,角A,B,C所對(duì)的邊分別為a,b,c,若f(A)=1,c=10,cosB=,求ΔABC的中線AD的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面是正方形,與交于點(diǎn),底面,為的中點(diǎn).
(1)求證:平面;
(2)求證:;
(3)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為的導(dǎo)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在上存在最大值0,求函數(shù)在上的最大值;
(3)求證:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義域?yàn)?/span>R的周期函數(shù),最小正周期為2,且
f(1+x)=f(1-x),當(dāng)-1≤x≤0時(shí),f(x)=-x.
(1)判斷f(x)的奇偶性;
(2)試求出函數(shù)f(x)在區(qū)間[-1,2]上的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市有一條東西走向的公路l,現(xiàn)欲經(jīng)過公路l上的O處鋪設(shè)一條南北走向的公路m,在施工過程中發(fā)現(xiàn)O處的正北方向1百米的A處有一漢代古跡,為了保護(hù)古跡,該市委決定以A為圓心,1百米為半徑設(shè)立一個(gè)圓形保護(hù)區(qū),為了連通公路l,m,欲再新建一條公路PQ,點(diǎn)P,Q分別在公路l,m上(點(diǎn)P,Q分別在點(diǎn)O的正東、正北方向),且要求PQ與圓A相切.
(1)當(dāng)點(diǎn)P距O處2百米時(shí),求OQ的長(zhǎng);
(2)當(dāng)公路PQ的長(zhǎng)最短時(shí),求OQ的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),。
(1)求的單調(diào)區(qū)間;
(2)討論零點(diǎn)的個(gè)數(shù);
(3)當(dāng)時(shí),設(shè)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com