【題目】如圖所示,在四棱錐PABCD中,PA⊥底面ABCD,PA=2,∠ABC=90°,,BC=1, ,∠ACD=60°,ECD的中點(diǎn).

(1)求證:BC∥平面PAE;

(2)求點(diǎn)A到平面PCD的距離.

【答案】(1)見(jiàn)解析;(2)

【解析】(1)證明:∵AB,BC=1,∠ABC=90°,

AC=2,∠BCA=60°.

在△ACD中,∵AD=2,AC=2,∠ACD=60°,

AD2AC2CD2-2AC·CD·cos∠ACD,

CD=4,∴AC2AD2CD2,∴△ACD是直角三角形,

ECD中點(diǎn),∴AECDCE

∵∠ACD=60°,∴△ACE為等邊三角形,

∴∠CAE=60°=∠BCA,∴BCAE,

AE平面PAE,BC平面PAE,∴BC∥平面PAE.

(2)設(shè)點(diǎn)A到平面PCD的距離為d,根據(jù)題意可得,

PC=2,PDCD=4,∴SPCD=2,

VPACDVAPCD,∴·SACD·PA·SPCD·d

××2×2×2=×2d,∴d

∴點(diǎn)A到平面PCD的距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,平面PAD⊥底面 ABCD,側(cè)棱PA=PD,底面ABCD為直角梯形,其中BC∥AD ,AB⊥AD,AD=2AB=2BC=2,OAD中點(diǎn).

)求證:PO⊥平面ABCD

)線段AD上是否存在點(diǎn),使得它到平面PCD的距離為?若存在,求出值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了解廣告投入對(duì)銷(xiāo)售收益的影響,在若干地區(qū)各投入萬(wàn)元廣告費(fèi)用,并將各地的銷(xiāo)售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開(kāi)始計(jì)數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.]

(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;

(2)試估計(jì)該公司投入萬(wàn)元廣告費(fèi)用之后,對(duì)應(yīng)銷(xiāo)售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);

(3)該公司按照類(lèi)似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:

廣告投入 (單位:萬(wàn)元)

1

2

3

4

5

銷(xiāo)售收益 (單位:萬(wàn)元)

2

3

2

7

由表中的數(shù)據(jù)顯示, 之間存在著線性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與曲線恰有兩個(gè)不同的交點(diǎn),記的所有可能取值構(gòu)成集合,是橢圓上一動(dòng)點(diǎn),點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱(chēng),記的所有可能取值構(gòu)成集合,若隨機(jī)從集合中分別抽出一個(gè)元素,則的概率是___

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面α及直線a,b,則下列說(shuō)法正確的是(  )

A. 若直線a,b與平面α所成角都是30°,則這兩條直線平行

B. 若直線ab與平面α所成角都是30°,則這兩條直線不可能垂直

C. 若直線ab平行,則這兩條直線中至少有一條與平面α平行

D. 若直線ab垂直,則這兩條直線與平面α不可能都垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)同時(shí)滿足:(1)對(duì)于定義域上的任意,恒有;(2)對(duì)于定義域上的任意,,當(dāng)時(shí),恒有,則稱(chēng)函數(shù)為“理想函數(shù)”.給出下列四個(gè)函數(shù)中:①; ②; ③;④,則被稱(chēng)為“理想數(shù)”的有________(填相應(yīng)的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知中,角的對(duì)邊分別為

)若,求面積的最大值;

)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知幾何體,其中四邊形為直角梯形,四邊形為矩形, ,且, .

(1)試判斷線段上是否存在一點(diǎn),使得平面,請(qǐng)說(shuō)明理由;

(2)若,求該幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓方程為,射線與橢圓的交點(diǎn)為M,過(guò)M作傾斜角互補(bǔ)的兩條直線,分別與橢圓交于AB兩點(diǎn)(異于M).

(1)求證:直線AB的斜率為定值;

(2)求面積的最大值。

查看答案和解析>>

同步練習(xí)冊(cè)答案