【題目】已知橢圓方程為,射線與橢圓的交點(diǎn)為M,過M作傾斜角互補(bǔ)的兩條直線,分別與橢圓交于A,B兩點(diǎn)(異于M).
(1)求證:直線AB的斜率為定值;
(2)求面積的最大值。
【答案】(1)見解析;(2)。
【解析】
(1)先求出點(diǎn),結(jié)合題意設(shè)直線MA的方程為,解方程組得到,同理得到,進(jìn)而得到,為定值.(2)由(1)可設(shè)直線AB的方程為,與橢圓方程聯(lián)立得到關(guān)于的方程,結(jié)合判別式可得.再由(1)可得點(diǎn)到直線AB的距離為,,
進(jìn)而求得的面積,最后結(jié)合基本不等式可得所求.
(1)證明:由,解得.
∴.
∵過M作的兩條直線斜率都存在,不防設(shè)直線MA的斜率為,且,
則直線MA的方程為,
由消去
,
∴,
∴.
同理得直線MB的方程為,可得.
∴,為定值.
(2)解:由(1)設(shè)直線AB的方程為,
由消去整理得,
∵直線AB與橢圓交于兩點(diǎn),
∴,
解得.
又點(diǎn)到直線AB的距離為,
=.
設(shè)的面積為S,
則,
當(dāng)且僅當(dāng),即時等號成立.
∴面積的最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,PA⊥底面ABCD,PA=2,∠ABC=90°,,BC=1, ,∠ACD=60°,E為CD的中點(diǎn).
(1)求證:BC∥平面PAE;
(2)求點(diǎn)A到平面PCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面是等邊三角形且垂直于底面,底面是矩形,,是的中點(diǎn).
(1)證明:平面;
(2)點(diǎn)在棱上,且直線與直線所成角的余弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB=2a,F(xiàn)為CD的中點(diǎn).
(1)求證:AF∥平面BCE;
(2)判斷平面BCE與平面CDE的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=,.
(1)求證:CF⊥平面BDE;
(2)求二面角A-BE-D的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若f (x)在區(qū)間(-∞,2)上為單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;
(2)若a=0,x0<1,設(shè)直線y=g(x)為函數(shù)f (x)的圖象在x=x0處的切線,求證:f (x)≤g(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),,函數(shù).
(Ⅰ)設(shè)不等式的解集為C,當(dāng)時,求實數(shù)取值范圍;
(Ⅱ)若對任意,都有成立,試求時,的值域;
(Ⅲ)設(shè),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,其離心率為,以原點(diǎn)為圓心,橢圓的短軸長為直徑的圓被直線截得的弦長等于.
(1)求橢圓的方程;
(2)設(shè)為橢圓的左頂點(diǎn),過點(diǎn)的直線與橢圓的另一個交點(diǎn)為,與軸相交于點(diǎn),過原點(diǎn)與平行的直線與橢圓相交于兩點(diǎn),問是否存在常數(shù),使恒成立?若存在,求出;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的圖像如圖所示.
(1)求函數(shù)的解析式;
(2)當(dāng)時,求函數(shù)的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com