【題目】某醫(yī)科大學(xué)實(shí)習(xí)小組為研究實(shí)習(xí)地晝夜溫差與患感冒人數(shù)之間的關(guān)系,分別到當(dāng)?shù)貧庀蟛块T和某醫(yī)院抄錄了1月份至3月份每月5日、20日的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:

日期

15

120

25

220

35

320

晝夜溫差

10

11

13

12

8

6

就診人數(shù)(人)

22

25

29

26

16

12

該小組確定的研究方案是:先從這六組數(shù)據(jù)中隨機(jī)選取4組數(shù)據(jù)求線性回歸方程,再用剩余的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1)求剩余的2組數(shù)據(jù)中至少有一組是20日的概率;

2)若選取的是120日,25日,220日,35日四組數(shù)據(jù).

①請根據(jù)這四組數(shù)據(jù),求出關(guān)于的線性回歸方程,用分?jǐn)?shù)表示);

②若由線性回歸方程得到的估計(jì)數(shù)據(jù)與剩余的檢驗(yàn)數(shù)據(jù)的誤差均不超過1人,則認(rèn)為得到的線性回歸方程是理想的,試問①中所得線性回歸方程是否理想?

附參考公式:,.

【答案】1;(2)①;②是.

【解析】

1剩余的2組數(shù)據(jù)中至少有一組是20分兩種情況,兩組都是20日,只有一組是20日分別計(jì)算方法數(shù),利用古典概型和互斥事件的公式即得解;

2)計(jì)算,由參考公式計(jì)算,即得線性回歸直線,代入數(shù)值預(yù)測即可.

從六組數(shù)據(jù)中隨機(jī)選取4組數(shù)據(jù),剩余2組數(shù)據(jù)的方法數(shù)為,

剩余的2組數(shù)據(jù)中至少有一組是20分兩種情況:

第一種兩組都是20日的方法數(shù)為

第二種只有一組是20日的方法數(shù)為,

根據(jù)兩個(gè)互斥事件有一個(gè)發(fā)生的概率公式得,剩

余的2組數(shù)據(jù)中至少有一組是20日的概率為:;

2由所選數(shù)據(jù)得,,

由參考公式得

.

所以關(guān)于的線性回歸方程為.

當(dāng)時(shí),,;

當(dāng)時(shí),,

所以該小組所得線性回歸方程是理想的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)談?wù)摵瘮?shù)的零點(diǎn)個(gè)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)為,左右兩頂點(diǎn),點(diǎn)為橢圓上任意一點(diǎn),滿足直線的斜率之積為,且的最大值為4.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知直線軸的交點(diǎn)為,過點(diǎn)的直線與橢圓相交與兩點(diǎn),連接點(diǎn)并延長,交軌跡于一點(diǎn).求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩陣,直線經(jīng)矩陣所對應(yīng)的變換得到直線,直線又經(jīng)矩陣所對應(yīng)的變換得到直線,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中, ,動(dòng)點(diǎn)滿足:以為直徑的圓與軸相切.

(1)求點(diǎn)的軌跡方程;

(2)設(shè)點(diǎn)的軌跡為曲線,直線過點(diǎn)且與交于兩點(diǎn),當(dāng)的面積之和取得最小值時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險(xiǎn)公司對一個(gè)擁有20000人的企業(yè)推出一款意外險(xiǎn)產(chǎn)品,每年每位職工只要交少量保費(fèi),發(fā)生意外后可一次性獲得若干賠償金,保險(xiǎn)公司把企業(yè)的所有崗位共分為三類工種,從事這三類工種的人數(shù)分別為12000,6000,2000,由歷史數(shù)據(jù)統(tǒng)計(jì)出三類工種的賠付頻率如下表(并以此估計(jì)賠付概率):

已知三類工種職工每人每年保費(fèi)分別為25元、25元、40元,出險(xiǎn)后的賠償金額分別為100萬元、100萬元、50萬元,保險(xiǎn)公司在開展此項(xiàng)業(yè)務(wù)過程中的固定支出為每年10萬元.

(1)求保險(xiǎn)公司在該業(yè)務(wù)所或利潤的期望值;

(2)現(xiàn)有如下兩個(gè)方案供企業(yè)選擇:

方案1:企業(yè)不與保險(xiǎn)公司合作,職工不交保險(xiǎn),出意外企業(yè)自行拿出與保險(xiǎn)公司提供的等額賠償金賠償付給意外職工,企業(yè)開展這項(xiàng)工作的固定支出為每年12萬元;

方案2:企業(yè)與保險(xiǎn)公司合作,企業(yè)負(fù)責(zé)職工保費(fèi)的70%,職工個(gè)人負(fù)責(zé)保費(fèi)的30%,出險(xiǎn)后賠償金由保險(xiǎn)公司賠付,企業(yè)無額外專項(xiàng)開支.

請根據(jù)企業(yè)成本差異給出選擇合適方案的建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義上的函數(shù),則下列選項(xiàng)不正確的是(

A.函數(shù)的值域?yàn)?/span>

B.關(guān)于的方程個(gè)不相等的實(shí)數(shù)根

C.當(dāng)時(shí),函數(shù)的圖象與軸圍成封閉圖形的面積為

D.存在,使得不等式能成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,分別是的上頂點(diǎn)和下頂點(diǎn).

1)若上位于軸兩側(cè)的兩點(diǎn),求證:四邊形不可能是矩形;

2)若的左頂點(diǎn),上一點(diǎn),線段軸于點(diǎn),線段軸于點(diǎn),,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解高一新生是否愿意參加軍訓(xùn),隨機(jī)調(diào)查了80名新生,得到如下2×2列聯(lián)表

愿意

不愿意

合計(jì)

x

5

M

y

z

40

合計(jì)

N

25

80

1)寫出表中xy,z,M,N的值,并判斷是否有99.9%的把握認(rèn)為愿意參加軍訓(xùn)與性別有關(guān);

2)在被調(diào)查的不愿意參加軍訓(xùn)的學(xué)生中,隨機(jī)抽出3人,記這3人中男生的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

參考公式:

附:

PK2k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.01

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案