【題目】如圖,在多面體ABCDEF中,底面ABCD是正方形,梯形底面ABCD,且.
(Ⅰ)證明:平面平面;
(Ⅱ)求直線AF與平面CDE所成角的大。
【答案】(Ⅰ)見解析(Ⅱ).
【解析】
(Ⅰ)由已知結合面面垂直的性質可得,在梯形ADEF中,求解三角形得,再由線面垂直的判定可得平面ABF,進一步得到平面平面CDF;
(Ⅱ)以A為坐標原點,分別以AB,AD所在直線為x,y軸建立空間直角坐標系,求出平面CDE的一個法向量,再求出的坐標,由與平面CDE的法向量所成角的余弦值可得直線AF與平面CDE所成角的大。
(Ⅰ)證明:∵梯形底面ABCD,且梯形底面,
又,
平面,
,
在梯形ADEF中,過F作,垂足為G,
設,可得,
則,,
,
則,
即,
又,且平面,
平面ABF,
而平面CDF,
∴平面平面CDF;
(Ⅱ)解:以A為坐標原點,分別以AB,AD所在直線為x,y軸建立空間直角坐標系,
則,,,,,,,,
設平面CDE的一個法向量為,
由,
取,得.
設直線AF與平面CDE所成角的大小為,則,
,
即直線AF與平面CDE所成角的大小為.
科目:高中數學 來源: 題型:
【題目】某市有一家大型共享汽車公司,在市場上分別投放了黃、藍兩種顏色的汽車,已知黃、藍兩種顏色的汽車的投放比例為.監(jiān)管部門為了了解這兩種顏色汽車的質量,決定從投放到市場上的汽車中隨機抽取5輛汽車進行試駕體驗,假設每輛汽車被抽取的時能性相同.
(1)求抽取的5輛汽車中恰有2輛是藍色汽車的概率;
(2)在試駕體驗過程中,發(fā)現藍色汽車存在一定質量問題,監(jiān)管部門決定從投放的汽車中隨機地抽取一輛送技術部門作進一步抽樣檢測,并規(guī)定:若抽取的是黃色汽車.則將其放回市場,并繼續(xù)隨機地抽取下一輛汽車;若抽到的是藍色汽車,則抽樣結束;并規(guī)定抽樣的次數不超過次,在抽樣結束時,若已取到的黃色汽車數以表示,求的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,共享單車已經悄然進入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務民眾,某共享單車公司在其官方中設置了用戶評價反饋系統,以了解用戶對車輛狀況和優(yōu)惠活動的評價.現從評價系統中選出條較為詳細的評價信息進行統計,車輛狀況的優(yōu)惠活動評價的列聯表如下:
對優(yōu)惠活動好評 | 對優(yōu)惠活動不滿意 | 合計 | |
對車輛狀況好評 | |||
對車輛狀況不滿意 | |||
合計 |
(1)能否在犯錯誤的概率不超過的前提下認為優(yōu)惠活動好評與車輛狀況好評之間有關系?
(2)為了回饋用戶,公司通過向用戶隨機派送每張面額為元,元,元的 三種騎行券.用戶每次使用掃碼用車后,都可獲得一張騎行券.用戶騎行一次獲得元券,獲得元券的概率分別是,,且各次獲取騎行券的結果相互獨立.若某用戶一天使用了兩次該公司的共享單車,記該用戶當天獲得的騎行券面額之和為,求隨機變量的分布列和數學期望.
參考數據:
參考公式:,其中.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知離心率為的橢圓的左頂點為,左焦點為,及點,且、、成等比數列.
(1)求橢圓的方程;
(2)斜率不為的動直線過點且與橢圓相交于、兩點,記,線段上的點滿足,試求(為坐標原點)面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某傳染病疫情爆發(fā)期間,當地政府積極整合醫(yī)療資源,建立“艙醫(yī)院”對所有密切接觸者進行14天的隔離觀察治療.治療期滿后若檢測指標仍未達到合格標準,則轉入指定專科醫(yī)院做進一步的治療.“艙醫(yī)院”對所有人員在“入口”及“出口”時都進行了醫(yī)學指標檢測,若“入口”檢測指標在35以下者則不需進入“艙醫(yī)院”而是直接進入指定?漆t(yī)院進行治療.以下是20名進入“艙醫(yī)院”的密切接觸者的“入口”及“出口”醫(yī)學檢測指標:
入口 | 50 | 35 | 35 | 40 | 55 | 90 | 80 | 60 | 60 | 60 | 65 | 35 | 60 | 90 | 35 | 40 | 55 | 50 | 65 | 50 |
出口 | 70 | 50 | 60 | 50 | 75 | 70 | 85 | 70 | 80 | 70 | 55 | 50 | 75 | 90 | 60 | 60 | 65 | 70 | 75 | 70 |
(Ⅰ)建立關于的回歸方程;(回歸方程的系數精確到0.1)
(Ⅱ)如果60是“艙醫(yī)院”的“出口”最低合格指標,那么,“入口”指標低于多少時,將來這些密切接觸者將不能進入“艙醫(yī)院”而是直接進入指定專科醫(yī)院接受治療.(檢測指標為整數)
附注:參考數據:,.
參考公式:回歸方程中斜率和截距的最小二乘法估計公式分別為:,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某建材商場國慶期間搞促銷活動,規(guī)定:如果顧客選購物品的總金額不超過600元,則不享受任何折扣優(yōu)惠;如果顧客選購物品的總金額超過600元,則超過600元部分享受一定的折扣優(yōu)惠,折扣優(yōu)惠按下表累計計算.
某人在此商場購物獲得的折扣優(yōu)惠金額為30元,則他實際所付金額為____元.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“搜索指數”是網民通過搜索引擎,以每天搜索關鍵詞的次數為基礎所得到的統計指標.“搜索指數”越大,表示網民對該關鍵詞的搜索次數越多,對該關鍵詞相關的信息關注度也越高.下圖是2017年9月到2018年2月這半年中,某個關鍵詞的搜索指數變化的走勢圖.
根據該走勢圖,下列結論正確的是( )
A. 這半年中,網民對該關鍵詞相關的信息關注度呈周期性變化
B. 這半年中,網民對該關鍵詞相關的信息關注度不斷減弱
C. 從網民對該關鍵詞的搜索指數來看,去年10月份的方差小于11月份的方差
D. 從網民對該關鍵詞的搜索指數來看,去年12月份的平均值大于今年1月份的平均值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的離心率,橢圓的上、下頂點分別為,,左、右頂點分別為,,左、右焦點分別為,.原點到直線的距離為.
(1)求橢圓的方程;
(2)是橢圓上異于,的任一點,直線,,分別交軸于點,,若直線與過點,的圓相切,切點為,證明:線段的長為定值,并求出該定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com