【題目】已知函數(shù),當(dāng)時(shí),的最小值為,且對(duì)任意的,不等式恒成立,則實(shí)數(shù)m的最大值是________.

【答案】2

【解析】

根據(jù)題意,由的最小值為分析可得,再對(duì)不等式變形可得,

構(gòu)造函數(shù),求得最小值為,即可得到結(jié)論.

由題意,

當(dāng)時(shí),,此時(shí),

當(dāng)時(shí),恒成立,則上單調(diào)遞增,

所以,的最小值為,解得.

當(dāng)時(shí),,

當(dāng)時(shí),此時(shí),恒成立,

所以,函數(shù)的最小值為,解得(舍),

當(dāng)時(shí),此時(shí),恒成立,

所以,函數(shù)的最小值為,解得(舍).

綜上,當(dāng)時(shí),的最小值為時(shí),此時(shí),

所以,不等式對(duì)恒成立,即,

,則,

,則恒成立,即上單調(diào)遞增,又,

所以,當(dāng)時(shí),,即;當(dāng)時(shí),,即.

上單調(diào)遞減,在上單調(diào)遞增,

所以,處取得最小值,此時(shí)最小值為,

所以,,即實(shí)數(shù)的最大值為.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在①成等差數(shù)列;②成等比數(shù)列;③三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問(wèn)題中,并加以解答.

已知的內(nèi)角所對(duì)的邊分別是,面積為.若__________,且,試判斷的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某景區(qū)平面圖如圖1所示,為邊界上的點(diǎn).已知邊界是一段拋物線(xiàn),其余邊界均為線(xiàn)段,且,拋物線(xiàn)頂點(diǎn)的距離.以所在直線(xiàn)為軸,所在直線(xiàn)為軸,建立平面直角坐標(biāo)系.

1)求邊界所在拋物線(xiàn)的解析式;

2)如圖2,該景區(qū)管理處欲在區(qū)域內(nèi)圍成一個(gè)矩形場(chǎng)地,使得點(diǎn)在邊界上,點(diǎn)在邊界上,試確定點(diǎn)的位置,使得矩形的周長(zhǎng)最大,并求出最大周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,真四棱柱的底面是菱形,,,E,M,N分別是BC,的中點(diǎn).

1)證明:

2)求平面DMN與平面所成銳角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn),離心率為,點(diǎn)是橢圓上的動(dòng)點(diǎn),的最大面積是

1)求橢圓的方程;

2)圓E經(jīng)過(guò)橢圓的左、右焦點(diǎn),且與橢圓在第一象限的交點(diǎn)為,且三點(diǎn)共線(xiàn),為坐標(biāo)原點(diǎn),直線(xiàn)交橢圓于兩點(diǎn),且

i 求直線(xiàn)的斜率;

ii)當(dāng)的面積取到最大值時(shí),求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在發(fā)生某公共衛(wèi)生事件期間,有專(zhuān)業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間沒(méi)有發(fā)生在規(guī)模群體感染的標(biāo)志為連續(xù)10天,每天新增疑似病例不超過(guò)7”.根據(jù)過(guò)去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是

A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0

C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市對(duì)一項(xiàng)惠民市政工程滿(mǎn)意程度(分值:分)進(jìn)行網(wǎng)上調(diào)查,有2000位市民參加了投票,經(jīng)統(tǒng)計(jì),得到如下頻率分布直方圖(部分圖):

現(xiàn)用分層抽樣的方法從所有參與網(wǎng)上投票的市民中隨機(jī)抽取位市民召開(kāi)座談會(huì),其中滿(mǎn)意程度在的有5人.

1)求的值,并填寫(xiě)下表(2000位參與投票分?jǐn)?shù)和人數(shù)分布統(tǒng)計(jì));

滿(mǎn)意程度(分?jǐn)?shù))

人數(shù)

2)求市民投票滿(mǎn)意程度的平均分(各分?jǐn)?shù)段取中點(diǎn)值);

3)若滿(mǎn)意程度在5人中恰有2位為女性,座談會(huì)將從這5位市民中任選兩位發(fā)言,求男性甲或女性乙被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱柱中,、分別是的中點(diǎn),為等邊三角形,.

(Ⅰ)求證:平面;

(Ⅱ)(i)求證:平面

ii)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)在區(qū)間內(nèi)有且只有一個(gè)極值點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案