【題目】如圖,已知四棱錐, 平面,底面中, , ,且, 的中點.

(1)求證:平面平面

(2)問在棱上是否存在點,使平面,若存在,請求出二面角的余弦值;若不存在,請說明理由.

【答案】(1)見解析;(2)

【解析】試題分析:(1)要證平面平面,即證平面,即證:

(2) 存在點使平面,在內(nèi),過垂足為,易知為二面角的平面角,從而得到結(jié)果.

試題解析:

方法一:(1)證明:∵平面, 平面,

. 的中點,且梯形,

平面, 平面,且

平面.

平面, ∴平面⊥平面

(2)存在點使平面,在內(nèi),過垂足為

由(1)平面 平面, ,

, 平面

平面, 平面,

∵平面平面

為二面角的平面角.

中, ,

,

故二面角的余弦值為.

方法二:

∴以為原點,射線, 分別為, , 軸的正半軸,建立空間直角坐標系如圖

,

, , , , ,

的中點,∴,

1

,

平面, 平面,且

平面.

平面, ∴平面⊥平面

(2)存在點使平面,在內(nèi),過垂足為

由(1)平面, 平面, ,

平面

設(shè)平面的一個法向量為,

,

,

.

平面

是平面的一個法向量.

由圖形知二面角的平面角是銳角,

所以二面角余弦值為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】我校為豐富師生課余活動,計劃在一塊直角三角形的空地上修建一個占地面積為(平方米)的矩形健身場地,如圖,點上,點上,且點在斜邊上,已知, 米, 米, .設(shè)矩形健身場地每平方米的造價為元,再把矩形以外(陰影部分)鋪上草坪,每平方米的造價為元(為正常數(shù))

(1)試用表示,并求的取值范圍;

(2)求總造價關(guān)于面積的函數(shù);

(3)如何選取,使總造價最低(不要求求出最低造價)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐中,底面為矩形, .側(cè)面底面.

(1)證明: ;

(2)設(shè)與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知, .

討論的單調(diào)性;

,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列滿足: , ,

()判斷的大小關(guān)系,并證明你的結(jié)論;

()求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)在的人基本每天都離不開手機,許多人手機一旦不在身邊就不舒服,幾乎達到手機二十四小時不離身,這類人群被稱為“手機控”,這一群體在大學生中比較突出.為了調(diào)查大學生每天使用手機的時間,某調(diào)查公司針對某高校男生、女生各25名學生進行了調(diào)查,其中每天使用手機時間超過8小時的被稱為:“手機控”,否則被稱為“非手機控”.調(diào)查結(jié)果如下:

手機控

非手機控

合計

女生

5

男生

10

合計

50

(1)將上面的列聯(lián)表補充完整,再判斷是否有99.5%的把握認為“手機控”與性別有關(guān),說明你的理由;

(2)現(xiàn)從被調(diào)查的男生中按分層抽樣的方法選出5人,再從這5人中隨機選取3人參加座談會,記這3人中“手機控”的人數(shù)為,試求的分布列與數(shù)學期望.

參考公式: ,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為, 為橢圓的上頂點, 為等邊三角形,且其面積為, 為橢圓的右頂點.

Ⅰ)求橢圓的方程;

Ⅱ)若直線與橢圓相交于兩點(不是左、右頂點),且滿足,試問:直線是否過定點?若過定點,求出該定點的坐標,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若,討論函數(shù)的單調(diào)性;

2)若函數(shù)上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高考復(fù)習經(jīng)過二輪“見多識廣”之后,為了研究考前“限時搶分”強化訓練次數(shù)與答題正確率的關(guān)系,對某校高三某班學生進行了關(guān)注統(tǒng)計,得到如表數(shù)據(jù):

1

2

3

4

20

30

50

60

(1)求關(guān)于的線性回歸方程,并預(yù)測答題正確率是的強化訓練次數(shù)(保留整數(shù));

(2)若用)表示統(tǒng)計數(shù)據(jù)的“強化均值”(保留整數(shù)),若“強化均值”的標準差在區(qū)間內(nèi),則強化訓練有效,請問這個班的強化訓練是否有效?

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

,樣本數(shù)據(jù), ,…, 的標準差為

查看答案和解析>>

同步練習冊答案