【題目】已知橢圓,直線交橢圓兩點(diǎn),為坐標(biāo)原點(diǎn).

1)若直線過(guò)橢圓的右焦點(diǎn),求的面積;

2)若,試問(wèn)橢圓上是否存在點(diǎn),使得四邊形為平行四邊形?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

【答案】1;(2)存在,

【解析】

1)根據(jù)直線過(guò)右焦點(diǎn)求出直線方程,聯(lián)立直線與橢圓方程,求出,利用面積公式即可得解;

2)聯(lián)立直線與橢圓方程,根據(jù)四邊形為平行四邊形,且.

,,求出點(diǎn)的坐標(biāo)為,代入橢圓方程,結(jié)合韋達(dá)定理計(jì)算求解.

1)設(shè).

直線過(guò)橢圓的右焦點(diǎn),則,

直線的方程為.

聯(lián)立,

解得.

的面積為.

2)聯(lián)立

,解得.

由韋達(dá)定理得.

.

四邊形為平行四邊形,

,且.

,,

點(diǎn)的坐標(biāo)為.

又點(diǎn)在橢圓上,即,

整理得.

,,即

,即.

,

綜上所述,的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求曲線在點(diǎn)處的切線方程;

(2)令,討論的單調(diào)性并判斷有無(wú)極值,若有,求出極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)某中學(xué)理學(xué)社為了吸收更多新社員,在校團(tuán)委的支持下,在高一學(xué)年組織了抽簽贈(zèng)書(shū)活動(dòng).月初報(bào)名,月末抽簽,最初有30名同學(xué)參加.社團(tuán)活動(dòng)積極分子甲同學(xué)參加了活動(dòng).

①第一個(gè)月有18個(gè)中簽名額.甲先抽簽,乙和丙緊隨其后抽簽.求這三名同學(xué)同時(shí)中簽的概率.

②理學(xué)社設(shè)置了第()個(gè)月中簽的名額為,并且抽中的同學(xué)退出活動(dòng),同時(shí)補(bǔ)充新同學(xué),補(bǔ)充的同學(xué)比中簽的同學(xué)少2個(gè),如果某次抽簽的同學(xué)全部中簽,則活動(dòng)立刻結(jié)束.求甲同學(xué)參加活動(dòng)時(shí)間的期望.

2)某出版集團(tuán)為了擴(kuò)大影響,在全國(guó)組織了抽簽贈(zèng)書(shū)活動(dòng).報(bào)名和抽簽時(shí)間與(1)中某中學(xué)理學(xué)社的報(bào)名和抽簽時(shí)間相同,最初有30萬(wàn)人參加,甲同學(xué)在其中.每個(gè)月抽中的人退出活動(dòng),同時(shí)補(bǔ)充新人,補(bǔ)充的人數(shù)與中簽的人數(shù)相同.出版集團(tuán)設(shè)置了第()個(gè)月中簽的概率為,活動(dòng)進(jìn)行了個(gè)月,甲同學(xué)很幸運(yùn),中簽了,在此條件下,求證:甲同學(xué)參加活動(dòng)時(shí)間的均值小于個(gè)月.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊與直角梯形所在的平面互相垂直,且,,.

1)證明:直線平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,設(shè)直線過(guò)橢圓的上頂點(diǎn)和右焦點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為2.

1)求橢圓的方程.

2)過(guò)點(diǎn)且斜率不為零的直線交橢圓,兩點(diǎn),在軸的正半軸上是否存在定點(diǎn),使得直線的斜率之積為非零的常數(shù)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】孫子定理是中國(guó)古代求解一次同余式組的方法,是數(shù)論中一個(gè)重要定理,最早可見(jiàn)于中國(guó)南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》,年英國(guó)來(lái)華傳教士偉烈亞力將其問(wèn)題的解法傳至歐洲,年英國(guó)數(shù)學(xué)家馬西森指出此法符合年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國(guó)剩余定理”.這個(gè)定理講的是一個(gè)關(guān)于整除的問(wèn)題,現(xiàn)有這樣一個(gè)整除問(wèn)題:將個(gè)整數(shù)中能被除余且被除余的數(shù)按由小到大的順序排成一列構(gòu)成一數(shù)列,則此數(shù)列的項(xiàng)數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面α平面βl,A,Cα內(nèi)不同的兩點(diǎn),B,Dβ內(nèi)不同的兩點(diǎn),且A,B,C,D直線lM,N分別是線段AB,CD的中點(diǎn).下列判斷正確的是(  )

A.ABCD,則MNl

B.M,N重合,則ACl

C.ABCD相交,且ACl,則BD可以與l相交

D.ABCD是異面直線,則MN不可能與l平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù).

1)討論的單調(diào)性,設(shè)的最小值為,并求證:

2)若有三個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,圓,一動(dòng)圓在軸右側(cè)與軸相切,同時(shí)與圓相外切,此動(dòng)圓的圓心軌跡為曲線,橢圓與曲線有相同的焦點(diǎn).

1)求曲線的方程;

2)設(shè)曲線與橢圓相交于第一象限點(diǎn),且,求橢圓的標(biāo)準(zhǔn)方程;

3)在(2)的條件下,如果橢圓的左頂點(diǎn)為,過(guò)且垂直于軸的直線與橢圓交于,兩點(diǎn),直線與直線分別交于,兩點(diǎn),證明:四邊形的對(duì)角線的交點(diǎn)是橢圓的右頂點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案