【題目】如圖,三棱柱中,,.

1)證明:;

2)若,在線段上是否存在一點(diǎn),使二面角的余弦值為?若存在,求的值,若不存在,請(qǐng)說(shuō)明理由.

【答案】1)見(jiàn)解析;(2)存在,

【解析】

1)取的中點(diǎn),連接,由題可得為等邊三角形,則,利用平行的傳遞性可得,平面,進(jìn)而,由三角形的性質(zhì)即可得證;

2)設(shè),則,易得以為原點(diǎn),分別為軸建立空間直角坐標(biāo)系,設(shè),由平面的法向量和平面的法向量,利用數(shù)量積求得夾角,進(jìn)而求解即可.

1)證明:取的中點(diǎn),連接,

,,

為等邊三角形,∴,

又∵,,∴,

,∴平面,

平面,∴,

中點(diǎn),∴

2)存在,

設(shè),則,

,∴,又,∴,

為原點(diǎn),分別為軸建立空間直角坐標(biāo)系,如圖所示,

,

因?yàn)?/span>在線段,設(shè),

,

設(shè)平面的法向量為,則由,即,

,則,

易知平面的法向量為,

當(dāng),即時(shí),二面角的平面角為,

,解得(舍),

所以存在點(diǎn)滿足條件,這時(shí)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐中,底面為菱形,底面,,E為棱的中點(diǎn),F為棱上的動(dòng)點(diǎn).

1)求證:平面;

2)若銳二面角的正弦值為,求點(diǎn)F的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐中,底面四邊形ABCD是菱形,對(duì)角線ACBD交于點(diǎn)O

求證:平面平面PBD;

,,E為線段PA的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是等差數(shù)列,公差為,前項(xiàng)和為.

1)設(shè),求的最大值.

2)設(shè),數(shù)列的前項(xiàng)和為,且對(duì)任意的,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中,e為自然對(duì)數(shù)的底數(shù).

1)當(dāng)時(shí),求處的切線方程;

2)求函數(shù)的單調(diào)區(qū)間;

3)若存在(),使得,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)為,的等差中項(xiàng),其中、、都是正數(shù),過(guò)點(diǎn)的直線與原點(diǎn)的距離為.

1)求橢圓的方程;

2)點(diǎn)是橢圓上一動(dòng)點(diǎn),定點(diǎn),求面積的最大值;

3)已知定點(diǎn),直線與橢圓交于、相異兩點(diǎn).證明:對(duì)任意的,都存在實(shí)數(shù),使得以線段為直徑的圓過(guò)點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若對(duì)任意的正整數(shù),總存在正整數(shù),使得數(shù)列的前項(xiàng)和,則稱(chēng)是“回歸數(shù)列”.

(1)①前項(xiàng)和為的數(shù)列是否是“回歸數(shù)列”?并請(qǐng)說(shuō)明理由;

②通項(xiàng)公式為的數(shù)列是否是“回歸數(shù)列”?并請(qǐng)說(shuō)明理由;

(2)設(shè)是等差數(shù)列,首項(xiàng),公差,若是“回歸數(shù)列”,求的值;

(3)是否對(duì)任意的等差數(shù)列,總存在兩個(gè)“回歸數(shù)列”,使得成立,請(qǐng)給出你的結(jié)論,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個(gè)極值點(diǎn),當(dāng)時(shí),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次不等式ax2+2x+b>0的解集為{x|x≠c},則(其中a+c≠0)的取值范圍為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案