【題目】已知關(guān)于x的一元二次不等式ax2+2x+b>0的解集為{x|x≠c},則(其中a+c≠0)的取值范圍為_____.
【答案】(﹣∞,﹣6]∪[6,+∞)
【解析】
由條件利用二次函數(shù)的性質(zhì)可得ac=﹣1,ab=1, 即c=-b將轉(zhuǎn)為(a﹣b)+,利用基本不等式求得它的范圍.
因為一元二次不等式ax2+2x+b>0的解集為{x|x≠c},由二次函數(shù)圖像的性質(zhì)可得a>0,二次函數(shù)的對稱軸為x==c,△=4﹣4ab=0,
∴ac=﹣1,ab=1,∴c=,b=,即c=-b,
則==(a﹣b)+,
當a﹣b>0時,由基本不等式求得(a﹣b)+≥6,
當a﹣b<0時,由基本不等式求得﹣(a﹣b)﹣≥6,即(a﹣b)+≤﹣6,
故(其中a+c≠0)的取值范圍為:(﹣∞,﹣6]∪[6,+∞),
故答案為:(﹣∞,﹣6]∪[6,+∞).
科目:高中數(shù)學 來源: 題型:
【題目】九章算術(shù)是我國古代著名數(shù)學經(jīng)典其中對勾股定理的論述比西方早一千多年,其中有這樣一個問題:“今有圓材埋在壁中,不知大小以鋸鋸之,深一寸,鋸道長一尺問徑幾何?”其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深一寸,鋸道長一尺問這塊圓柱形木料的直徑是多少?長為1丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示陰影部分為鑲嵌在墻體內(nèi)的部分已知弦尺,弓形高寸,估算該木材鑲嵌在墻中的體積約為( )(注:1丈尺寸,,)
A. 600立方寸 B. 610立方寸 C. 620立方寸 D. 633立方寸
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在直角坐標系中,點到拋物線的準線的距離為,點是上的定點,、是上的兩個動點,且線段的中點在線段上.
(1)拋物線的方程及的值;
(2)當點、分別在第一、四象限時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】新中國成立70周年以來,黨中央國務(wù)院高度重視改善人民生活,始終把提高人民生活水平作為一切工作的出發(fā)點和落腳點城鄉(xiāng)居民收入大幅增長,居民生活發(fā)生了翻天覆地的變化.下面是1949年及2015年~2018年中國居民人均可支配收入(元)統(tǒng)計圖.以下結(jié)論中不正確的是( )
A.20l5年-2018年中國居民人均可支配收入與年份成正相關(guān)
B.2018年中居民人均可支配收入超過了1949年的500倍
C.2015年-2018年中國居民人均可支配收入平均超過了24000元
D.2015年-2018年中圍居民人均可支配收入都超過了1949年的500倍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等差數(shù)列首項和公差都是,記的前n項和為,等比數(shù)列各項均為正數(shù),公比為q,記的前n項和為:
(1)寫出構(gòu)成的集合A;
(2)若將中的整數(shù)項按從小到大的順序構(gòu)成數(shù)列,求的一個通項公式;
(3)若q為正整數(shù),問是否存在大于1的正整數(shù)k,使得同時為(1)中集合A的元素?若存在,寫出所有符合條件的的通項公式,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)學中,布勞威爾不動點定理是拓撲學里一個非常重要的不動點定理,它可應(yīng)用到有限維空間,并構(gòu)成一般不動點定理的基石.布勞威爾不動點定理得名于荷蘭數(shù)學家魯伊茲·布勞威爾(L.E. J. Brouwer),簡單的講就是對于滿足一定條件的連續(xù)函數(shù),存在一個點,使得,那么我們稱該函數(shù)為“不動點”函數(shù),下列為“不動點”函數(shù)的是( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com