【題目】如圖,四邊形CDEF是正方形,四邊形ABCD為直角梯形,∠ADC=90°,AB∥DC,平面CDEF⊥平面ABCD,AB=ADCD=a,M在FB上,且BD∥平面ECM.
(1)求證:M為BF中點(diǎn);
(2)求證:平面BCF⊥平面EMC;
(3)求直線CD與平面ECM所成角的正弦值.
【答案】(1)見解析(2)見解析(3).
【解析】
(1)連結(jié),,交于點(diǎn),則是中點(diǎn),連結(jié),由平面,得,由此能證明為中點(diǎn);
(2)以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能證明平面平面;
(3)求出,,,平面的法向量,1,,利用向量法能求出直線與平面所成角的正弦值.
(1)證明:連結(jié)DF,CE,交于點(diǎn)O,則O是DF中點(diǎn),連結(jié)OM,
∴BD∥平面ECM,OM平面BDF,
∴BD∥OM,∴M為BF中點(diǎn).
(2)證明:以D為原點(diǎn),DA為x軸,DC為y軸,DE為z軸,建立空間直角坐標(biāo)系,
則B(a,a,0),C(0,2a,0),F(0,2a,2a),M(),E(0,0,2a),
(﹣a,a,0),(﹣a,a,2a),(,,﹣a),(0,2a,﹣2a),
設(shè)平面BCF的法向量(x,y,z),
則,取x=1,得(1,1,0),
設(shè)平面EMC的法向量(x1,y1,z1),
則,取z1=1,得(﹣1,1,1),
∵0,∴平面BCF⊥平面EMC.
(3)解:D(0,0,0),(0,﹣2a,0),平面EMC的法向量(﹣1,1,1),
設(shè)直線CD與平面ECM所成角為θ,
則直線CD與平面ECM所成角的正弦值為:
sinθ.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在流行病學(xué)調(diào)查中,潛伏期指自病原體侵入機(jī)體至最早臨床癥狀出現(xiàn)之間的一段時(shí)間.某地區(qū)一研究團(tuán)隊(duì)從該地區(qū)500名A病毒患者中,按照年齡是否超過60歲進(jìn)行分層抽樣,抽取50人的相關(guān)數(shù)據(jù),得到如下表格:
潛伏期(單位:天) | ||||||||
人 數(shù) | 60歲及以上 | 2 | 5 | 8 | 7 | 5 | 2 | 1 |
60歲以下 | 0 | 2 | 2 | 4 | 9 | 2 | 1 |
(1)估計(jì)該地區(qū)500名患者中60歲以下的人數(shù);
(2)以各組的區(qū)間中點(diǎn)值為代表,計(jì)算50名患者的平均潛伏期(精確到0.1);
(3)從樣本潛伏超過10天的患者中隨機(jī)抽取兩人,求這兩人中恰好一人潛伏期超過12天的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,B1,B2是橢圓的短軸端點(diǎn),P是橢圓上異于點(diǎn)B1,B2的一動(dòng)點(diǎn).當(dāng)直線PB1的方程為時(shí),線段PB1的長(zhǎng)為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)Q滿足: .求證:△PB1B2與△QB1B2的面積之比為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,∠A,∠B,∠C所對(duì)邊分別為a,b,c,且bsinC+2csinBcosA=0.
(1)求∠A大;
(2)若a=2,c=2,求△ABC的面積S的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國(guó)道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國(guó)道路交通安全法》 第90條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員不“禮 讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):
(1)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;
(2)預(yù)測(cè)該路口 9月份的不“禮讓斑馬線”違章駕駛員人數(shù);
(3)若從表中3、4月份分別抽取4人和2人,然后再?gòu)闹腥芜x2 人進(jìn)行交規(guī)調(diào)查,求抽到的兩人恰好來自同一月份的概率.
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)且x,.
(1)判斷的奇偶性,并用定義證明;
(2)若不等式在上恒成立,試求實(shí)數(shù)a的取值范圍;
(3)的值域?yàn)?/span>函數(shù)在上的最大值為M,最小值為m,若成立,求正數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在實(shí)數(shù)集上的函數(shù),把方程稱為函數(shù)的特征方程,特征方程的兩個(gè)實(shí)根,稱為的特征根.
(1)討論函數(shù)的奇偶性,并說明理由;
(2)求表達(dá)式;
(3)把函數(shù),的最大值記作、最小值記作,令,若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A經(jīng)過點(diǎn),且和直線相切.
(Ⅰ)求該動(dòng)圓圓心的軌跡的方程;
(Ⅱ)已知點(diǎn),若斜率為1的直線與線段相交(不經(jīng)過坐標(biāo)原點(diǎn)和點(diǎn)),且與曲線交于兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定一個(gè)項(xiàng)的實(shí)數(shù)列, , , ,任意選取一個(gè)實(shí)數(shù),變換將數(shù)列, , , 變換為數(shù)列, , , ,再將得到的數(shù)列繼續(xù)實(shí)施這樣的變換,這樣的變換可以連續(xù)進(jìn)行多次,并且每次所選擇的實(shí)數(shù)可以不相同,第次變換記為,其中為第次變換時(shí)所選擇的實(shí)數(shù).如果通過次變換后,數(shù)列中的各項(xiàng)均為,則稱, , , 為“次歸零變換”.
()對(duì)數(shù)列, , , ,給出一個(gè)“次歸零變換”,其中.
()對(duì)數(shù)列, , , , ,給出一個(gè)“次歸零變換”,其中.
()證明:對(duì)任意項(xiàng)的實(shí)數(shù)列,都存在“次歸零變換”.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com